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Abstract

This paper deals with a Gierer-Meinhardt model with 2 activators and 2 inhibitors described by a reaction—
diffusion system with fractional reactions. The purpose of this paper is to prove the existence of a global
solution. Our technique is based on a suitable Lyapunov functional.
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1. Introduction

Due to their interesting behavior and overall dynamics, Gierer-Meinhardt type systems have attracted
a lot of attention in last decade. The original system was proposed in 1972 [8] relating to a biological
phenomenon discovered by A. Trembley in 1744 [6] and named morphogenesis. Morphogenesis is the study
of pattern formation in spatial biological tissue structures, see [15].The system is of the form

ut—alAuzo—,uu—FZ—Z
{Ut—agAU:—VU+1£ forall z € Q ,t >0, (1.1)
with the boundary and initial conditions given by
Ju _ Qv _
o =5 =0, x € 0Q,t >0, (1.2)
U(Z',O) = 901(‘%.) > O,U((E,O) = QOQ(Z) > 07 T e Qv

*Corresponding author: salem.abdelmalek@univ-tebessa.dz
Email addresses: gouadria.23@gmail.com (Abdelouahab Gouadria), sbendoukha@taibahu.edu.sa (Samir Bendoukha),
salem.abdelmalek@univ-tebessa.dz (Salem Abdelmalek)

Received received date



Gouadria, Bendoukha, Abdelmalek, Commun. Nonlinear Anal. 1 (2019), 58-72 59

where Q C RV is a bounded domain with smooth boundary 99, ai,as > 0, p,v,0 > 0, and the indices
p,q,7 and s are non negative with p > 1. A comprehensive summary related to the application of activator—
inhibitor type systems in the theory of phyllotaxis, i.e. biological pattern formation in plants, was provided
by Meinhardt et al. in [12]. The model (1.1) was studied by Rothe in 1984 [14], who established the global
existence of solutions for the specific case where p =2, ¢ =1, r =2, s = 0 and N = 3. Later, Wu and
Li [16] achieved the same result for u, v~ and o sufficiently small. The boundedness of solutions for (1.1)
independent of the initial values was established Mingde et al. in 1995 [13] subject to

p—1 : q
— 1. 1.
. <mm<s+17 ) (1.3)

Masuda and Takahashi [11] extended the previous results to the generalized case:

up

ug — a1Au = o1 () — pu + p1 (z,u) —,
(e (1.4)
u

vy — agAv = 03 (z) — vv + p2 (2, u) 25

with o1, 09 € C1 (ﬁ), 01 >0, 09 >0, and p1,ps € Cc! (ﬁ X ﬁi) N L*> (ﬁ X @i) satisfying p1 > 0, pa > 0.
In 2006, Jiang [10] showed that system (1.4) admits a unique nonnegative global solution (u,v) satisfying
(1.2) under the same conditions in (1.3) and with ¢1, ¢ € W2 (Q), I > max {N, 2}, %&£ = %—ff =0 on 012,

on
and @1 > 0,9 > 0 in Q.
Abdelmalek et al. [2] used a Lyapunov functional to show the global existence of solutions for a 3—
substance phyllotaxis Gierer Meinhardt system of the form
uP1
u — a1 Au =0 —biu+ 7

v? (W +¢)’
up2

vy — agAv = —bov + ,
Uq2w£2
3

Wt — agAw = *b3w + W,
for o > 0, ¢ > 0, and

O<p1—1<max{p2min< LN 1>,p3min( noa 1>} (1.6)

@+ 1 ry rs+ 17 g3’

. This work was extended to m—components in [1]. Another more recent and related study is that of Henine
et al. [5] in 2015, in which the boundedness of solutions and large time behavior was established for a more
generalized version of (1.5).

Building on the work carried out in [2, 1, 5], the aim of this study is to study the nature of solutions for
a 2—activator—2—inhibitor Gierer—Meinhardt type system by means of a suitable Lyapunov functional. We
consider the 4—component system

Ouq ul bt
ot —a1Auy = fi = 01 — byug + IZERITE
O ub?1 P22
ot — asAug = fo = 09 — botiy + —s—2— + a(u1 — vy + b),
vy v
vy uﬁ’g’lu};m (1.7)
S 0BV = 1= —bsvi +
Ovs u141u242
o asAve = gg = —byva + PN
for x € Q2,t > 0 with Neummann boundary conditions
ou ou ov ov
L2122 on 90 x {t > 0}, (1.8)

oy on  on 9y
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and the initial data

u1(0,2) = p1(x) > 0
u2(0,z) = pao(z) >0
vf(O,x) = zi(m) >0 " @, (1.9)
v2(0,2) = pa(z) >0

and ¢; € C (ﬁ) for all i = 1,2, 3,4. Note that © is an open bounded domain of class C' in RY with boundary
09, and 0/0n denotes the outward normal derivative on 02. We assume a;, b;, and p;; are nonnegative
indices for all ,5 = 1,2,3,4 and 01,02 > 0. We also consider the case where

—1
hz (pu=1) < min( P13 ,@,1
P32 D31 P33+ 1 paa

and (1.10)

par _ (p2—1)

< ——— < min( b2 ,@,1
P41 D42 Paa + 1 pa3

)

or

-1
P12 _ (P11 )<min( Pl P13 4

D42 P41 Das + 172?3’
and (1.11)

pu _ (2 —1) (P23 Pu
D31 P32 P33+ 17 pas’

2. Notations and Important Lemmas

In this section, we will introduce some essential notation to simplify derivations and proofs. For reasons

ai + 4 forall 4,7 =1,2,3 and let «, 8 and
21/0,,'0,]'

that will become clear at later stages in this paper, we set A;; =

~ be positive constants satisfying the three conditions

by + b3 1
a>2max{1, b } > > A2, (2.1)
BBy > B2, (2.2)
and
(B1By — B3) (Bi1By — B2) > (B1Bs — B3Bs)?, (2.3)
where . )

Also, for completeness, we would like to state the usual norms in spaces LP(£2), L>°(Q) and C (), which are
denoted respectively by:

1
[ully = 7 [ [u(@)" dz, [lull,, = esssup|u(z)],
12| Jo €0
xT

and

U o)y — max (u(x)| .
lello@) = max u(z)]

The following lemmas are important.
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Lemma 2.1. Assume that p1; and ps; satisfy

-1
P12z _ (P11 )<min( P13 P4

) 1); (24)
D32 D31 P33+ 1 p34

for i = 1.4, then for all p11 > 1, ps31,p32,p34,0, 3, v > 0, there exists C = C (p11,p31,p32,,3) > 0 and
01 =01 (o) € (0,1), such that

[/
_1 1
u?-l-pn ug-i—pm utlx-l—p31 ug+p32 u?ug (2 5)
Y+p13, 0+p1a  — v Y+p33+1, d+p3a Y 0y0 ’
vy Py vg (o U3 Uy

Proof. First, we have for all u; > p1, us > po, v1 > us, ve > pg the following equality

pi1—1
pi1—1, p12 D31
Uy Uy Uy P31 _ _
“ P13 phte =C(s —p32, P33+1, P34 ugllvl m2v2 " (2.6)
1 "2 Ug™ "] Ua
with
p11— 1
mi1 = —p32 + D12,
P31
33 + 1 -1
g — (p ) (p11 — 1) .
P31
p34) (P11 — 1
m3=—( ) )—p14,
P31
and
pu—1
We will apply Young’s inequality for (2.6) by taking
P11 — 1+€
u’fll_lug’m _ <5 ul®! D31 .
/UIIJ13/U§14 u;p3zvf33+lv§734
u;nl—pggav;mz+(p33+1)8v2—m3+p34€u1—p318
pu—1 a1
3 N AN
= a BUQ—P32,011>33+IU§734 u‘l" ’
with
c1 =cB°.
Recall that Young’s inequality takes the form
fg <eff* 4 cg”, (2.7)
with
1
oo — 1 1 1
f;gZO,EZO;CSZE Po 7P07QO>07*+*:1-
Po Qo
We let

1011—1+€
P31, P
E:i f:<5 up* uy” ) D32

U1p33+1vg34
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p31€
—B.7,0
Uy "VjVy | @ 1
9=\——"= and pg = —————
< ur ) b=l + €
P32
Since
1 1
—_ 4 — = 17
Po Qo
it follows that
1
qo = _1 )
1 Pu L.
P32
and
1 p11 — 1 + p32e
cgze_po_l _ (L ps2— (pu1—1)+e
C1
Substituting in Young’s inequality (2.7) yields
au11711—1u12)12 < (s u€731 N
1)11’137)72’14 - u;p32011733+1vg34
P32¢€
p11 — 1 + page pin—1
—B,v,0\ all— +e€
o (L2 —(pu—1)+e (W 0% < P32
¢ ug ’
which can be simplified to
- P32¢
P11 —1
uPri—itaypizes ubB Ty pa2th AT P32 e
@ pP13tYypP1at+s = U;f31+1+7v12034+5 2 v’lYUg :
where
e 1 + p3oe
L\ Tpsi— (pri—1) ¢
Cy = — .
C1
The proof is concluded by taking e sufficiently small and
91 = 91(05) =1- p32€_ 1 .
o <1 _mes + €>
P32
O
Corollary 2.2. If p12 = p32 = p1a = p3a = 0, then condition (2.4) reduces to
Pu=b i PE g (2.8)
D31 P33+ 1

Proof. The proof of this corrollary is similar to the previous lemma but with p1s = p3s = p14 = p3a =0. O
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Lemma 2.3. Let p1,T > 0 and f; = f;(t) be a non-negative integrable function on [0,T) and 0 < §; < 1
(G=1,..,J). Let W =W (t) be a positive function on [0,T) satisfying the differential inequality

J
dw (t .
dt( ) < —uW (t) + ij(t)Wef t), 0<t<T. (2.9)
j=1
Then, we have
W(t)<k, 0<t<T, (2.10)
where Kk is the maximal root of the algebraic equation:
J t
v=D ( sup [ €_u(t_§)fj(§)d§> 2% =W (0). (2.11)
=1 \o<i<1 Jo
Proof. This Lemma has been proven in [[11], Lemma 2.2] in the more general case. O

Lemma 2.4. Let (uy (t,.),u2(t,.),v1(¢,.),v2(t,.)) be a solution of (1.7)-(1.9). Then, for any (t,x) in
(0, Tinax) x €2,

ulgt,mg >e mlnggolgarii ,
us(t,x) > e min(p2(z)) > 0,
vi(t,2) > e~ min(ps (@) (2.12)
va(t, ) > et min(p4(x)) > 0.

Proof. The proof of this lemma is trivial and can be achieved by means of the maximum principle. O
Lemma 2.5. Let A be the symmetric matriz defined by

ai; a2 a3 a4
A — | M2 (22 423 A24
a1z a23 asz as4
a14 Q24 Ga34 Q44

then
a2y (a11a22 — a%Q) det A= (PQ — Rz)
where
P = (0611(122 - G%Q) ((111(133 - a%g) — (a11a23 — G12a13)2 )
Q = (anaxn —ady) (a11a1 — aly) — (ar1a24 — ar2a14)”,
R = (anaz —aly) (a11a3s — arzars) — (ar1a23 — ar2a13) (a11a24 — a12a14) -
Proof. The proof is trivial. O

3. Existence of Solutions

This section is concerned with the global existence of solutions for the proposed model (1.7)—(1.9). The
existence problem reduces to the derivation of a uniform estimate of [|fil,, [If2ll,, [lg1ll,, and [lg2[l, on
[0; Tmax) in LP(Q2) for some p > N/2 (see [9]). To establish the uniform estimate, we utilize an appropriate
Lyapunov functional, thereby producing LP-bounds on ui, ug, vy, and vs. Since fi, f2, g1, and go are
by design continuously differentiable on R%, it is trivial to confirm their Lipschitz continuity on bounded
subsets of the domain of a fractional power of the operator

amA 0 0 0
3 0 aA 0 0
A= 0 0 aA 0 | (3.1)

0 0 0 a4
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for any initial data in C(Q2). Hence, we may directly coin the following local existence result (see, for
instance, [9]).

Proposition 3.1. The system (1.7)-(1.9) admits a local unique classical solution (uy,ug,v1,v2) on (0, Tax) ¥
Q, i.e. if Tax < 00, then

2 2
Jim (Z o 0+ 3 s .>uoo) = . (32)

After establishing the local existence of solutions, we move to show the global existence, which is described
in the following theorem.

Theorem 3.2. Suppose that the functions f; and g;, i = 1,2, satisfy condition (1.11) and let (uq (t,.),ua (¢,.),v1 (,.),
be a solution of (1.7)-(1.9) and

o 8
L(t) = /Q up (b z)up (b)) (3.3)

o] (t,2) v (t, 2)
Then, the functional L is uniformly bounded on the interval [0, T*],T* < Tmax, where

Tnax ([l91(2) oo » [192(2) | oo » [193(2) |og 5 [[04(2) [l )

denotes the eventual blow—up time.

Proof. We start by differentiating the functional L (t) with respect to ¢ yielding
d B
L' (t) —/ u1u2 dx
dt U1 v2
B o, B
uStu uSu
- [ [( 5> (ur), + (5) (u2),
Q 1%2 /., 1Y2 /0,

- 1
- DB (), 4 5 (), — 0
- 7,0 t Y,,0 t Y+1 5§ t
Q V10 102 1 2
B
ufu
1 Ug
- 5754»1 (’UQ) dx.
U1”2
Replacing dyuq, yug, w1 and dyve by their values in (1.7) leads to
a—1_ 0 a, B—1 a, B
us T u ufuy utu
/ 1 2 12
L'(t)= / a1Q Auy + agf—+ s—Aug — agfymAvl
oyl worl? W u u/o’
— 10— Avy — ba gg—bgﬁ ! 2 4 gyl 2
] VY U1 Vs 1”2 v vh
b 1 g u11711+oé 1u]2312+,3 +/8u11721+04u12722+5—1
4 + «
st = 317, paato
1 U2 pld Y ]2314 ,Ude ’yv§24
u];31+au12?32+,3 uzl)41 +aug42+,3 u({a—lug
-7 +y+1, psats P43+7 P44+5+1 + o 7,0
v vy Uy U102
B-1 Oz—i-l B-1 a, B-1 a, B—1
uu U ufu uu
+020—2— + fa 2 — —fa 1773 =+ fab L2 dz. (3.4)
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To simplify the proof, we write (3.4) in the form
L'(t)y=1+J,

where I contains the Laplacians and J contains the remaining terms, i.e.

ua 1
I:aloz/ 1 2Au1dx+azﬂ/
Q

6 AUde
”1 2
B

aﬁ

— 037/ ur Avldm — a45/ “ 6+1 Avy dx, (3.5)
Q U1 v) Q v v)

and

J = (—bla—bgﬁ+bg”y+b45)l}( )+
11711+a—1 p12+p p21+ocu12722+ﬂ 1

u u
2 1
a/ dx + 3
Q 0117134-’7 p14+0 Q ,Uf23+7 p24+0

p31+o, p32+06 pa1+o, paa+B
2

u U2 Ul u
v pss -+ paitd da — 6 Par Ty Pt o1

a-1, 8 a /3*1 a+1, f—1
+ oo o M dx + 098 Uit dx + Ba wdm
v 0 vl

5
1
ufuy
— Ba = dx—l—ﬂab Y, dx. (3.6)
Q U1t

Since the aim is to prove the boundedness of the functional L (t), we will examine I and J separately. As

for I, we use Green’s formula to obtain
ud 22
1=t [ (Qn) Tl

where Q and T given by

mafa—1) —H7%ay HTLap HTas
o+ a as + a4
Q ey ayy(y+1) gy o g
B a1 + asg a2—|—a3 as + a4
—a by @f(B-1) ——5—50
S O T
and
u
ivm
t
1 2V'Ul
T=| 2
ﬂvw
Vg
U1

It follows that the matrix @ is positive definite if, and only if, all its principal successive determinants A1,
Ay, Az, and Ay are positive. The first determinant A; = aja (v — 1) > 0 by (2.1). The second determinant
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Ay requires more attention. By (2.1), we have

aja (o — 1) —%av
Ay = a1 + ag
——5 oy ay(v+1)
a—1v+1
= o*ylazay [ 5 VT — A%] > 0.

Using Theorem 1 of [3], we obtain

a—1v+1 a—18-1
et [t )

a—1 2
- [ Agz — A12A13] } .
«

Then, using conditions (2.1) and (2.2), it is easy to show that Az > 0. Similarly, using lemma 2.5 along
with conditions (2.1) and (2.3), we obtain the last determinant

(a—1)A3 = a1a2a3a352fy2 { [

Ay =1[Q| > 0.
This implies that I <0 for all (¢,z) € [0, 7] x Q.

We now move our attention to J as defined in (3.6). According to the maximum principle, there exists

Co depending on [|¢1|l o, |€2]lo0s |93l and ||¢al| such that uy, ug, vi,v2 > Cy > 0 with

a—1
a—1_7 a, B\ o z
v?vg UYUS U1 V2 u2
a-l ~+5-8

u‘fug 1Y e
vag Cy

=B
«@

Q>

By defining
1\ o
Ci=|—=
1 (CO ) )
we can write
a—1

u‘fflug u?ug ¢
s S Cy .8 :
V1 Vg V1 Vg

In a very similar manner, we can obtain

/-1
a, B—1 a, B B
Uy Uy 8 Ug Ug
7,0 v,0 J
U1 Vg V1Vg
and
-1 s\ 7
a+1 — o
Uy Uy y UpUgy
7,0 Y..8 ’
U1 Vg U1 Vg
where
Y+o—a y+é—a—1
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Using lemma 2.1 for all (¢,z) € [0,T%] x €, we get
[%
utllz+1711—1ug+p12 _ u?+P31u5+P32 +C/ u?ug 1
’Y+p13 5+p14 =7 ’Y+p33+1 5-‘:—1734 1 viyvg
Bu?-i-pm B+p22 1 u?+p41 5+p42 . o u?ug 02
\ '17+p23 g+p24 - 1/+p43 g+p44+1 2 UYUg
or ,
u?—f—ml—lug-i-pm u‘f+p4l B+pa2 . » u?ug 3
v}/-&-mavg-kpu = v¥+p4gvg+p44+1 3 Uiyvg
Butll-l-pmug-&-pzz—l u?-&-puugﬂ?sz L u?ug 04
v¥+p23vg+p24 - Fyv¥+p33+1v<25+p34 4 U'lyvg
Employing these inequalities along with the definition of J in (3.6) leads to
u ﬂ
J < (=bia—bof + bgy +b40) L /C’l }yg dm
V1 V2
sl usu’ =
+/C'2 %yg d:B~|—0’10z/C'1 17(? dx
vV
o 192 Q 1Y2
8\ 5 8\ 5
uu uu
+ﬂ(02+ab)/ Cs 17 § da:—i—ﬁa/C'g % dx.
Q 1Y2 Q U1 Vs
o usul o
< (=bra — baff + b3y + byd) L (1) —i—/Cl 17 § dzx
A U1 V2
a—1
o uSu u?ug “
+/02 5 da:+a1a/C’1 3 dx
B-1
u® 5 B
+B (02 + ab + a) < 112 ) (3.7)
o] ”2
By applying Holder’s inequality for all ¢ € [0,7%], we obtain
1-60
PN wod® )\’ .
/C’ 17(? doe < C / lwgda: /Cled:c
Q V1 U2 Q U1y Q
or more compactly
6
a, B
/ C 82 dar < csLf), (3.8)
Q V12
where
C- — ‘Q|1—0
Similarly, it can be shown that
g\ %
ufu 0
/ c (Ugv(?) dz < CoL (1), (3.9)
Q 192
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and
02
uul P
/cg L2 | de < C7L%(t), (3.10)
Q U1 Vg
with
Co = Q™" and C;=|0Q'"%.
Also, since
5 a-1 5 a-1 N
uStu ¢ uStu « o
Cp [ L2 dr < / L2 (/ Cl)o‘dx> ,
A (mg o 0Tl o
we can state that )
o B\ T B
/ o |42 dx < CsLw (1), (3.11)
Q V1 Vg
and
s\ 55
ufu B—1
/ Cy <1;17U§> dx < CoL 7 (t), (3.12)
Q 1Y2
where

Os = C1 Qs and Cy=Cy Q7 .
Using inequalities (3.8)—(3.12) along with (3.7) yields the reduced inequality
J < (=bia —byf + bsy + byd) L (t) + Ce L% (1)
HCLP () + 1aCs L2 (8) + B (02 + ab + a) CoL 7 (1), (3.13)
Since —bja — by3 4 bsy + byd < 0, inequality (3.13) leads to

L' (t) < CeLP (t) + C7L%2(t) + o1aCs L (t) + B (02 + ab + a) CoLF (t). (3.14)

Finally, using Lemma 2.3 in [0,7*], we deduce that L(t) is bounded on (0, Tinax), i.-e. L(t) < 1 where v
depends on the L*-norms of ¢1, va2 , 3 and ¢4. This concludes the proof of Theorem 3.2. O

Corollary 3.3. Under the assumptions of Theorem 3.2, all solutions of problem (1.7)-(1.9) with positive
wnitial data in C (Q) are global. In addition, if by, ba, bs, by, 01,00 > 0, then uy, ug, v1, and vy are uniformly
bounded in Q x [0, 00).

P11,,P12 P21 ,,P22 P31 ,,P32 P41 ,,P42
Proof. Since L(t) is bounded on (0, Ty,ax) and the functions uplgupl o umupz o up33up3 o, an up 43up o are
o] Pog™ T PPt o) v
in L°°((0, Tmax), L™()) for all m > &, then as a consequence of the arguments in [9] or [7], we conclude
that the solution of the system (1.7)—(1.9) is global and uniformly bounded on © x (0, +00). O

4. Numerical Example

Consider the four-component Gierer-Meinhardt system with a Conway—Cooper modification arranged
in a circle of 18 units with each unit possessing four reaction—diffusion concentrations, see [4]. The system
takes the form ) ,

a — a
% gaAA;_— pop ;r fopbb ua,
o pAb=cpa”—vb,
9¢ — D.Ac = pop + copS — uc + kys (a — b+ floor),
% — DgAd = c,p/c2 —vd,

(4.1)
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Table 1: First set of simulation parameters for the 4-component activator-inhibitor Gierer-Meinhardt type system in (4.1).

Parameters | Values || Parameters | Values
p 0.4 floor 0.5
Do 0.21 a(x,y,0) 1
P 0.14 b(z,y,0) 0.7
o 0.1 c(z,y,0) 0.9
' 0.1 d(z,y,0) |03
u 0.07 D, 0.15
v 0.07 Dy 0.12
Y3 0.009 D, 0.05
k 1 Dy 0.06

Table 2: Second set of simulation parameters for the 4-component activator—inhibitor Gierer-Meinhardt type system in (4.1).

Parameters | Values || Parameters | Values
P 0.5 floor 0.5
Do 0.15 a(z,y,0) 10
P 0.04 b(z,y,0) 7
co 0.1 c(x,y,0) 9
' 0.1 d(x,y,0) 7.3
0.07 D, 0.15
v 0.04 Dy 0.12
Y3 0.009 D, 0.05
k 1 Dy 0.06

with a and ¢ representing activator concentrations and b and d denoting inhibitor concentrations in a certain
scenario. It is easy to see that this system is a special case of our proposed model (1.7) by taking

P11 P12 P13 Pia 2 010
p— | P2 P22 P23 pu | _ 0 2 01
P31 P32 D33 D34 2 0 00
D41 D42 D43 D44 0 2 0 0

The resulting system satisfies conditions (1.10) using Corollary 2.2, which according to Theorem 3.2 guar-
antees the global existence of solutions for the system.

A Matlab computer simulation was carried out to obtain the numerical solutions of (4.1) given two sets
of parameters as illustrated in Tables 1 and 2. Figures 1-3 show snapshots of the solutions for the first set
of parameters given a two—dimensional spatial diffusion taken at times ¢ = 1s, 10s, and 500s, respectively.
Note that a zero mean Gaussian spatial noise with variance 02 = 0.04 was added to the initial values shown
in Table 1 in order to introduce non—uniformity to the concentrations. As can be observed, the solutions
reach a constant steady state in a short duration.

Figures 4 and 5 show the solutions of (4.1) in the 2-dimensional case given the parameters shown in
2. The solutions are depicted at times ¢ = 10s and ¢t = 500s. Although the solutions perturbate over time
never reaching a constant steady state, solutions still exist globally in time. The numerical simulations for
both examples were run for a duration as long as 5000s to confirm the global existence of solutions.
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Figure 1: Solutions of system (4.1) taken at time ¢ = 1s with the parameters shown in Table (1).
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Figure 2: Solutions of system (4.1) taken at time ¢ = 10s with the parameters shown in Table (1).
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Figure 4: Solutions of system (4.1) taken at time ¢ = 10s with the parameters shown in Table (2).
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Figure 5: Solutions of system (4.1) taken at time ¢ = 500s with the parameters shown in Table (2).
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