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Abstract

In this paper, we prove some new common fixed point theorems for Geraghtys type contraction mappings
on partial metric spaces. Theorems presented are generalizations of fixed point theorems of Altun et al.
[Generalized Geraghty type mappings on partial metric spaces and fixed point results, Arab. J. Math. 2,
(2013), no. 3, 247-253]. We also give some examples to illustrate the usability of the obtained results.
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1. Introduction and Preliminaries

The notion of partial metric spaces (PMS) was initiated by Matthews [18, 19]. Subsequently, many
authors established fixed point theorems on partial metric spaces. For more details, see [4, 6, 7, 9, 13, 15,
16, 17, 20, 21, 22, 23] and references contained therein.

Definition 1.1. [18] A mapping p : X × X → [0,∞) is called a partial metric on nonempty set X if the
following conditions hold for all x, y, z ∈ X:

(P1) x = y if and only if p(x, x) = p(x, y) = p(y, y),

(P2) p(x, x) ≤ p(x, y),

(P3) p(x, y) = p(y, x),

(P4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

Then, the pair (X, p) is called a partial metric space (PMS).
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For a partial metric p on X, the function dp : X ×X → R+ defined as

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y), x, y ∈ X, (1.1)

is a metric on X . Each partial metric p on X generates a T0 topology τp, whose base is a family of open
p-balls {Bp(x, ε)|x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X|p(x, y) ≤ p(x, x) + ε} for all x ∈ X and ε > 0.

Definition 1.2. Let (X, p) be a partial metric space.
(i) A sequence {xn} in the PMS (X, p) converges to x ∈ X if and only if limn→∞ p(xn, x) = p(x, x).
(ii) A sequence {xn} in the PMS (X, p) is called a Cauchy sequence if limn,m→∞ p(xn, xm) exists (and finite).
(iii) A PMS (X, p) is called complete if every Cauchy sequence {xn} in X converges with respect to τp to a
point x ∈ X such that p(x, x) = limn,m→∞p(xn, xm).

Lemma 1.3. [18, 19] Let (X, p) be a partial metric space.
(i) A sequence {xn} is Cauchy sequence in a PMS (X, p) if and only if {xn} is Cauchy sequence in a metric
space (X, dp).
(ii) A PMS (X, p) is complete if and only if the metric space (X, dp) is complete. Moreover,

lim
n→∞

dp(xn, x) = 0 if and only if p(x, x) = lim
n,∞

p(xn, x) = lim
n,m∞

p(xn, xm).

Lemma 1.4. [2] Let (X, p) be a partial metric space and xn → x in a PMS (X, p) and p(x, x) = 0. Then
limn→∞ p(xn, y) = p(x, y) for all y ∈ X.

Lemma 1.5. [2] Let (X, p) be a partial metric space. Then
(1) If p(x, y) = 0, then x = y.
(2) If x 6= y, then p(x, y) > 0.

Definition 1.6. [1] Let X be a non-empty set and f, g : X → X are given self-mappings on X. If
w = fx = gx for some x ∈ X, then x is called a coincidence point of f and g, and w is called a point of
coincidence of f and g. Also, self-maps f and g are said to be weakly compatible if they commute at their
coincidence point; that is, if fx = gx for some x ∈ X, then fgx = gfx.

Lemma 1.7. [1] Let f, g : X → X be weakly compatible and f, g have a unique point of coincidence
w = fx = gx, then w is the unique common fixed point of f and g.

In 1973, Geraghty [12] introduced a class of functions to generalize the Banach contraction principle.
Let B be the family of all functions α : [0,∞)→ [0, 1) satisfying the property

lim
n→∞

α(tn) = 1 implies lim
n→∞

(tn) = 0.

Theorem 1.8. [12] Let (X, d) be a complete metric space. Let T : X → X be given mapping satisfying

d(Tx, Ty) ≤ α(d(x, y))d(x, y), x, y ∈ X,

where α ∈ B. Then T has a unique fixed point.

In recent years, some authors extended the result of Geraghty in the context of various metric spaces(see
[8, 10, 11, 14]). In 2013 Altun et al.[5] proved a version of Geraghtys theorem in partially metric spaces as
follows.

Theorem 1.9. [5] Let (X, p) be a complete partial metric space and T be a self-mapping on X which satisfy,

p(Tx, Ty) ≤ β(M(x, y)) max{p(x, y), p(x, Tx), p(y, Ty)}, (1.2)

for all x, y ∈ X, where β ∈ B and

M(x, y) = max{p(x, y), p(x, Tx), p(y, Ty),
p(Tx, y) + p(x, Ty)

2
}.

Then T has a unique fixed common point in X.
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2. Main Result

Now, we announce our first new result in this context.

Theorem 2.1. Let (X, p) be a partial metric space and let the mappings f, g : X → X satisfy the condition

p(gx, gy) ≤ β(M(x, y))m(x, y), for all x, y ∈ X, (2.1)

where β ∈ B and

m(x, y) = max{p(fx, fy), p(fx, gx), p(fy, gy)},

M(x, y) = max{p(fx, fy), p(fx, gx), p(fy, gy),
p(fx, gy) + p(fy, gx

2
}. (2.2)

Suppose also that g(X) ⊂ f(X) and f(X) is a complete subspace of X. Then f, g have a unique point of
coincident in X. Moreover if f and g are weakly compatible, then f and g have a unique common fixed point
in X.

Proof. Let x0 ∈ X be arbitrary. Since g(X) ⊂ f(X), inductively, we can define a sequence {xn} in X such
that

fxn+1 = gxn, n = 0, 1, 2, . . . . (2.3)

Using (2.1) and (2.3) with x = xn and y = xn+1, we get

p(fxn+1, fxn+2) = p(gxn, gxn+1) ≤ β(M(xn, xn+1))m(xn, xn+1), (2.4)

for all n = 0, 1, 2, . . .. Thus, by (2.2) and using (P4), we have

m(xn, xn+1) = max{p(fxn, fxn+1), p(fxn, gxn), p(fxn+1, gxn+1)}
= max{p(fxn, fxn+1), p(fxn+1fxn+2)}
= max{p(fxnfxn+1), p(fxn+1fxn+2)},

for all n = 0, 1, 2, . . .. If m(xn, xn+1) = p(fxn+1, fxn+2), then from the inequality (2.4), we have

p(fxn+1, fxn+2) ≤ β(M(xn, xn+1))p(fxn+1, fxn+2) < p(fxn+1, fxn+2),

which is a contradiction. Thus m(xn, xn+1) = p(fxn, fxn+1), so we have p(fxn+1, fxn+2) ≤ p(fxn, fxn+1).
Then p(fxn, fxn+1) is a nonincreasing sequence and hence it is convergent. Consequently, there exists r ≥ 0
such that limn→∞ p(fxn, fxn+1) = r. We prove r = 0. Suppose, on the contrary, that r > 0. Then, we have

p(fxn+1, fxn+2)

p(fxn, fxn+1)
≤ β(M(xn, xn+1)) < 1.

Then 1 ≤ limn→∞ β(M(xn, xn+1)) ≤ 1, which implies limn→∞ β(M(xn, xn+1)) = 1. Since β ∈ B, we have
limn→∞M(xn, xn+1) = 0 and hence,

lim
n→∞

p(fxn+1, fxn) = 0. (2.5)

From (1.1) and (2.5), we get limn→∞ dp(fxn+1, fxn) = 0. We claim that fxn is a Cauchy sequence in (X, dp).
Suppose fxn is not Cauchy sequence. Then there exists some ε > 0 for which we can find subsequences
{xm(k)} and {xm(k)} of {xn} with n(k) > m(k) > k such that dp(fxm(k), fxn(k)) ≥ ε. From (1.1), we have
ε ≤ dp(fxm(k), fxn(k)) ≤ 2p(fxm(k), fxn(k)). Without loss of generality, we can suppose that also

n(k) > m(k) > 0, p(fxm(k), fxn(k)) ≥
ε

2
, p(fxm(k), fxn(k)−1) <

ε

2
. (2.6)
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Using (2.6) and using (P4), we have

ε

2
≤ p(fxm(k), fxn(k))

≤ p(fxm(k), fxm(k)−1) + p(fxm(k)−1, fxn(k)−1) + p(fxn(k)−1, fxn(k))

≤ p(fxm(k), fxm(k)−1) + p(fxm(k)−1, fxm(k)) + p(fxm(k), fxn(k)−1) + p(fxn(k)−1, fxn(k)),

for all k > 1. Letting k →∞ in above inequality and using (2.5), we get

limk→∞p(fxm(k)−1, fxn(k)−1) =
ε

2
. (2.7)

Also, by (P4), we have

p(fxm(k)−1, fxn(k)) ≤ p(fxm(k)−1, fxn(k)−1) + p(fxn(k)−1, fxn(k)).

Letting k →∞ in the above inequality and using (2.5) and (2.7), we obtain

lim
n→∞

p(fxm(k)−1, fxn(k)) ≤
ε

2
. (2.8)

Using (2.1), with x = xm(k)−1 and y = xn(k)−1, we get

p(fxm(k), fxn(k)) = p(gxm(k)−1, gxn(k)−1)

≤ β(M(xm(k)−1, xn(k)−1))m(xm(k)−1, xn(k)−1), (2.9)

where, we have

m(xm(k)−1, xn(k)−1) = max{p(fxm(k)−1, fxn(k) − 1), p(fxm(k)−1, gxm(k)−1), p(fxn(k)−1, gxn(k)−1)}.

Letting k →∞ in relationship above and using (2.5-2.8), we obtain

lim
k→∞

m(xm(k)−1, xn(k)−1) ≤
ε

2
. (2.10)

By using (2.9) and (2.10), we get

ε

2
≤ ε

2
lim
k→∞

β(M(xm(k)−1, xn(k)−1)).

Then, we derive that, 1 ≤ limk→∞ β(M(xm(k)−1, xn(k)−1)) ≤ 1, and so limk→∞ β(M(xm(k)−1, xn(k)−1)) = 1.
Since β ∈ B, we conclude that limk→∞ p(fxm(k)−1, fxn(k)−1) = 0, which is a contradiction with (2.7).
Hence, we concluded that {fxn} is a Cauchy sequence in (X, dp). Since (f(X), p) is complete, by Lemma
1.3, (f(X), dp) is complete. Then there exists z ∈ f(X) such that

lim
n→∞

dp(fxn, z) = 0. (2.11)

From the property (ii) in Lemma 1.3, we have p(z, z) = limn→∞ p(fxn, z) = limn,m→∞ p(fxn, fxm). From
(P2) and using (2.5), we have

lim
n→∞

p(fxn, fxn) = 0. (2.12)

Applying (1.1), we have

dp(fxn, fxm) = 2p(fxn, fxm)− p(fxn, fxn)− p(fxm, fxm).
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Letting n,m→∞ in the above inequality, using (2.11) and (2.12), we have limn→∞ p(fxn, fxm) = 0. Then,
we have

p(z, z) = lim
n→∞

p(fxn, z) = lim
n→∞

p(fxn, fxm) = 0.

Since z ∈ f(X), we can find t ∈ X such that ft = z. We prove that gt = z. From (2.1), we have

p(fxn, gt) = p(gxn−1, gt) ≤ β(M(xn−1, t))m(xn−1, t), n = 1, 2, 3, ..., (2.13)

where

m(xn−1, t) = max{p(fxn−1, ft), p(fxn−1, gxn−1), p(ft, gt)}. (2.14)

Letting n → ∞ in (2.14) and using (2.5), we get limn→∞m(xn−1, z) = p(z, gt). From (2.13) and using
Lemma 1.4, we obtain p(z, gt) ≤ limn→∞ β(M(xn−1, t))p(z, gt), which implies that

1 ≤ lim
n→∞

β(M(xn−1, t)) ≤ 1.

By the property β, we have limn→∞M(xn−1, t) = 0, which yields p(z, gt) = 0, that is ft = gt = z. Hence
t is a coincidence point and z is a point of coincidence of f and g. Now we show that f and g have a
unique point of coincidence. For this, assume that there exists another point q in X such that z1 = fq = gq.
Suppose, to the contrary, p(z, z1) > 0. Using (2.1), we have

p(z, z1) = p(gt, gq) ≤ β(M(t, q))m(t, q),

where m(t, q) = max{p(ft, fq), p(ft, gt), p(fq, gq)} = p(z, z1). Then, we get

p(z, z1) ≤ β(M(t, q))p(z, z1) < p(z, z1),

which is a contradiction and hence p(z, z1) = 0 and we get that z = z1. Therefore, z is the unique point of
coincidence of f and g. Now, if f and g are weakly compatible then by Lemma 1.7, z is the unique common
fixed point of f and g.

If we take fx = x for all x ∈ X, in Theorem 2.1, we obtain the following result.

Corollary 2.2. [5] Let (X, p) be a complete partial metric space and let g : X → X be a mapping such that

p(gx, gy) ≤ β(M(x, y)) max{p(x, y), p(x, gx), p(y, gy)},

for all x, y ∈ X, where β ∈ B and

M(x, y) = max{p(x, y), p(x, gx), p(y, gy),
p(x, gy) + p(y, gx)

2
}.

Then g has a unique fixed point.

Corollary 2.3. Let (X, p) be a complete partial metric space and let g : X → X be a mapping such that

p(gx, gy) ≤ β(M(x, y))p(x, y),

for all x, y ∈ X, where β ∈ B and

M(x, y) = max{p(x, y), p(x, gx), p(y, gy),
p(x, gy) + p(y, gx)

2
}.

Then g has a unique fixed point.
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Example 2.4. Let X = [0,∞) and p : X ×X → [0,∞) be given as p(x, y) = max{x, y}. Let f, g : X → X
be defined respectively as fx = ex − 1, gx = ex−1

x+3 and β(t) = 1
2 . Suppose 0 ≤ x < y, then we have

m(x, y) = max{max{ex − 1, ey − 1},max{ex − 1,
ex − 1

x+ 3
},max{ey − 1,

ey − 1

y + 3
}} = ey − 1,

and

p(gx, gy) = max{e
x − 1

x+ 3
,
ey − 1

y + 3
} ≤ ey − 1

2

= β(M(x, y))m(x, y).

Then the conditions of Theorem 2.1 are satisfied and f, g have a unique common fixed point.

Theorem 2.5. Let (X, p) be a complete partial metric space and T, S be self-mappings on X which satisfy,

p(Tx, Sy) ≤ β(M(x, y))m(x, y), for all x, y ∈ X, (2.15)

where β ∈ B and
m(x, y) = max{p(x, y), p(Tx, x), p(y, Sy)},

M(x, y) = max{p(x, y), p(Tx, x), p(y, Sy),
p(Tx, y) + p(x, Sy)

2
}.

Then T and S have a unique common fixed point in X.

Proof. Let x0 ∈ X and consider the sequence {xn} in which x2n+1 = Sx2n and x2n+2 = Tx2n+1 for all
n = 0, 1, 2, . . .. If n is odd, for all n = 0, 1, 2, . . ., we have

p(xn+1, xn+2) = p(Txn, Sxn+1) ≤ β(M(xn, xn+1))m(xn, xn+1), (2.16)

where

m(xn, xn+1) = max{p(xn, xn+1), p(xn, Txn), p(xn+1, xSn+1)}
= max{p(xn, xn+1), p(xn, xn+1), p(xn+1, xn+2)}
= max{p(xn, xn+1), p(xn+1, xn+2)}.

Suppose m(xn, xn+1) = p(xn+1, xn+2). Since β ∈ B, from (2.16), we have p(xn+1, xn+2) < p(xn+1, xn+2),
which is a contradiction. Thus m(xn, xn+1) = p(xn, xn+1), so we have p(xn+1, xn+2) ≤ p(xn, xn+1). Simi-
larly, we can also prove that p(xn+1, xn+2) ≤ p(xn, xn+1) holds for case that n is even. Thus p(xn, xn+1) is
a nonincreasing sequence and hence it is convergent. Hence, there exists r ≥ 0 such that p(xn, xn+1) → r.
Next, we claim that r = 0. Assume on the contrary that r > 0. From (2.16), we have

p(xn+1, xn+2)

p(xn, xn+1)
≤ β(M(xn, xn+1)) < 1.

Which shows limn→∞ β(M(xn, xn+1)) = 1. Since β ∈ B, we have

lim
n→∞

p(xn, xn+1) = 0. (2.17)

Using (1.1) and (2.17), we get limn→∞ dp(xn+1, xn) = 0. Now, we claim that xn is a Cauchy sequence in
(X, dp). It suffices to show that {x2n} is a Cauchy sequence. Suppose that {x2n} is not a Cauchy sequence.
Then there exists some ε > 0 for which we can find subsequences {x2m(k)} and {x2n(k)} of {x2n} such that
n(k) is the smallest index for m(k) > n(k) > k such that dp(x2n(k), x2m(k)) ≥ ε. From (1.1), we obtain
ε ≤ dp(x2n(k), x2m(k)) ≤ 2p(xn(k), xm(k)). Without loss of generality, we can suppose that also

n(k) > m(k) > 0, p(x2n(k), x2m(k)) ≥
ε

2
, p(x2n(k), x2m(k)−2) <

ε

2
. (2.18)
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Using (2.18) and (P4), we have

ε

2
≤ p(x2n(k), x2m(k)) ≤ p(x2n(k), x2n(k)+1) + p(x2n(k)+1, x2m(k))

≤ p(x2n(k), x2n(k)+1) + β(M(x2m(k)−1, x2n(k)))m(x2m(k)−1, x2n(k)), (2.19)

where

m(x2m(k)−1, x2n(k)) = max{p(x2m(k)−1, x2n(k)), p(x2m(k)−1, Tx2m(k)−1), p(x2n(k), Sx2n(k))}
≤ max{p(x2m(k)−1, x2m(k)−2) + p(x2m(k)−2, x2n(k))

, p(x2m(k)−1, x2m(k)), p(x2n(k), x2n(k)+1)}.

Using (2.17) and (2.18), we get, limk→∞m(x2m(k)−1, x2n(k)) ≤ ε
2 . Then, letting n→∞, from (2.19) we have

ε
2 ≤ limk→∞ β(M(x2m(k)−2, x2n(k)))

ε
2 , which implies that 1 ≤ limk→∞ β(M(x2m(k)−2, x2n(k))) < 1. Since

β ∈ B, we have limk→∞M(x2m(k)−2, x2n(k)) = 0, which yields limk→∞ p(x2m(k)−1, x2n(k)) = 0. Using (P4),
we have

p(x2n(k), x2m(k)) ≤ p(x2n(k), x2m(k)−1) + p(x2m(k)−1, x2m(k)).

Letting k → ∞, and using (2.17), we have limk→∞ p(x2n(k), x2m(k)) = 0 which is a contradiction to (2.18).
Hence {xn} is a Cauchy sequence in (X, dp). Since (X, p) is complete, by Lemma 1.3, (X, dp) is complete.
Then there exists z ∈ X such that

lim
n→∞

dp(xn, z) = 0. (2.20)

From the property (ii) in Lemma 1.3, we have p(z, z) = limn→∞ p(xn, z) = limn,m→∞ p(xn, xm). By
the property (P2) and using (2.17), we have limn→∞ p(xn, xn) = 0. Using (1.1) and (2.20), we obtain
limn→∞ p(xn, xm) = 0. Then, we have p(z, z) = limn→∞ p(xn, z) = limn→∞ p(xn, xm) = 0. We assert that
Tz = z. Assume on the contrary that p(Tz, z) = ε and ε > 0. From (2.15), we have

p(Tz, Sx2n) ≤ β(M(z, x2n))m(z, x2n), (2.21)

where m(z, x2n) = max{p(z, x2n), p(Tz, z), p(x2n, Sx2n)}. Again, taking limit as n → ∞ in (2.21) and
using Lemma 1.4, we obtain ε ≤ ε limn→∞ β(M(z, x2n)) < 1. Since β ∈ B, we get limn→∞M(z, x2n) = 0,
consequently p(z, Tz) = 0 and so Tz = z. Similarly, we can prove that Sz = z. For the uniqueness, suppose
that Tw = Sw = w and z 6= w. From (2.15), we have p(z, w) = p(Tz, Sw) ≤ β(M(z, w))m(z, w), where

m(z, w) = max{p(z, w), p(z, Tz), p(w, Sw)} = p(z, w).

Then 1 ≤ β(M(z, w)) ≤ 1. Now, as β ∈ B we conclude that M(z, w) = 0, consequently, P (z, w) = 0 and we
get that z = w.

In theorem 2.5, if T = S is on X, then, we obtain the following result. Following corollary is Theorem
1.9 due to Altun and Sadarangani [5].

Corollary 2.6. [5] Let (X, p) be a complete partial metric space and T be a self-mapping on X which satisfy,

p(Tx, Ty) ≤ β(M(x, y)) max{p(x, y), p(x, Tx), p(y, Ty)},

for all x, y ∈ X, where β ∈ B and

M(x, y) = max{p(x, y), p(x, Tx), p(y, Ty),
p(Tx, y) + p(x, Ty)

2
}.

Then T has a unique fixed point in X.
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Example 2.7. Let X = [0,∞) and p : X ×X → [0,∞) be defined as follows: p(x, y) = max{x, y}. Then
(X, p) is a complete partial metric space. Define the mappings T, S : X → X by Tx = x

5 , Sx = x
3 and set

β(t) = 1
2 . Suppose 0 ≤ x < y, Then, we have

p(Tx, Sy) = max{x
5
,
y

3
} ≤ y

2
= β(M(x, y))m(x, y),

and

p(Ty, Sx) = max{y
5
,
x

3
} ≤ y

2
= β(M(x, y))m(x, y),

where m(x, y) = y . Then the conditions of Theorem 2.5 are satisfied.
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