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Abstract

In this paper, we introduce the notion of generalized ZG,α,µ,η,ϕ−contraction with respect to the CG−simulation
function introduced by Liu, Ansari, Chandok and Radenović[20] and prove the existence of PPF dependent
fixed points in Banach spaces. We draw some corollaries and an example is provided to illustrate our main
result.
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1. Introduction and Preliminaries

Banach contraction principle is one of the famous and basic fundemental result in fixed point theory. Due
to its significance, many authors generalized and extended the Banach contraction principle by introducing
new functions like α−admissible mapping, C−class function, simulation function etc., for more details we
refer [1, 2, 7, 18, 23].

Throughout this paper, we denote the real line by R, R+ = [0,∞), and N is the set of all natural
numbers, Z is the set of intergers.

In 2013, Karapınar, Kumam and Salimi[18] introduced the notion of triangular α−admissible mappings
as follows.

Definition 1.1. [18] Let T be a self mapping on X and let α : X ×X → R+ be a function. Then T is said
to be a triangular α−admissible mapping if for any x, y, z ∈ X,
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α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1 and
α(x, z) ≥ 1, α(z, y) ≥ 1 =⇒ α(x, y) ≥ 1.

In 2014, Ansari[1] introduced the concept of C−class function and many authors [2, 20] extended and
generalized various fixed point results of a selfmap satisfying certain inequality involving C−class function
in complete metric spaces.

Definition 1.2. [1] A mapping G : R+ × R+ → R is called a C−class function if it is continuous and for
any s, t ∈ R+, the function G satisfies the following conditions:
(i) G(s, t) ≤ s and
(ii) G(s, t) = s implies that either s = 0 or t = 0.
The family of all C−class functions is denoted by ∆.

Example 1.3. [1] The following functions belong to ∆.
(i) G(s, t) = s− t for all s, t ∈ R+.
(ii) G(s, t) = ks for all s, t ∈ R+ where 0 < k < 1.
(iii) G(s, t) = s

(1+t)r for all s, t ∈ R+ where r ∈ R+.

(iv) G(s, t) = sβ(s) for all s, t ∈ R+ where β : R+ → [0, 1) is continuous.
(v) G(s, t) = s− φ(s) for all s, t ∈ R+ where φ : R+ → R+ is continuous and φ(t) = 0 if and only if t = 0.
(vi) G(s, t) = sh(s, t) for all s, t ∈ R+ where h : R+ × R+ → R+ is continuous such that h(s, t) < 1

for all s, t ∈ R+.

In 2015, Khojasteh, Shukla and Radenović[14] introduced the notion of simulation function and proved
the existence of fixed points of ZH−contractions in complete metric spaces. Later, many authors extended
and generalized the simulation function by using different types of functions, for more details we refer
[17, 21, 22].

Definition 1.4. [14] A function ζ : R+ × R+ → R is said to be a simulation function if it satisfies the
following conditions:
(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s− t for all t, s > 0;
(ζ3) if {tn}, {sn} are sequences in (0,∞) such that lim

n→∞
tn = lim

n→∞
sn > 0, then lim sup

n→∞
ζ(tn, sn) < 0.

We denote the set of all simulation functions in the sense of Definition 1.4 by ZH .

Example 1.5. [14, 17] Let φi : R+ → R+ be a continuous function with φi(t) = 0 if and only if t = 0 for
i = 1, 2, 3. Then the following functions ζ : R+ × R+ → R belong to ZH .
(i) ζ(t, s) = s

s+1 − t for all t, s ∈ R+.
(ii) ζ(t, s) = λs− t for all t, s ∈ R+ and 0 < λ < 1.
(iii) ζ(t, s) = φ1(s)− φ2(t) for all t, s ∈ R+, where φ1(t) < t ≤ φ2(t) for all t > 0.
(iv) ζ(t, s) = s− φ3(s)− t for all t, s,∈ R+.

Definition 1.6. [14] Let (X, d) be a metric space, T : X → X be a mapping and ζ ∈ ZH . Then T is called
a ZH−contraction with respect to ζ if

ζ(d(Tx, Ty), d(x, y)) ≥ 0 (1.1)

for any x, y ∈ X.

Theorem 1.7. [14] Let (X, d) be a complete metric space and T : X → X be a ZH−contraction with
respect to ζ. Then T has a unique fixed point u in X and for every x0 ∈ X the Picard sequence {xn} where
xn = Txn−1 for any n ∈ N converges to the fixed point of T .

In 2015, Nastasi and Vetro[3] proved the existence of fixed points in complete metric spaces by using
simulation functions and a lowersemicontinuous function.
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Theorem 1.8. [3] Let (X, d) be a complete metric space and let T : X → X be a mapping. Suppose that
there exist a simulation function ζ ∈ ZH and a lower semicontinuous function ϕ : X → R+ such that

ζ(d(Tx, Ty) + ϕ(Tx) + ϕ(Ty), d(x, y) + ϕ(x) + ϕ(y)) ≥ 0 (1.2)

for any x, y ∈ X. Then T has a unique fixed point u ∈ X such that ϕ(u) = 0.

In 2018, Cho[11] introduced the notion of generalized weakly contractive mappings in metric spaces and
proved the existence of its fixed points in complete metric spaces.

Definition 1.9. [11] Let (X, d) be a metric space, T a self-mapping of X. Then T is called a generalized
weakly contractive mapping if

ψ(d(Tx, Ty) + ϕ(Tx) + ϕ(Ty)) ≤ ψ(m(x, y, d, T, ϕ))− φ(l(x, y, d, T, ϕ)) (1.3)

for any x, y ∈ X, where
(i) ψ : R+ → R+ is a continuous function and ψ(t) = 0 ⇐⇒ t = 0,
(ii) φ : R+ → R+ is a lower semicontinuous function and φ(t) = 0 ⇐⇒ t = 0,
(iii) m(x, y, d, T, ϕ) = max{d(x, y) + ϕ(x) + ϕ(y), d(x, Tx) + ϕ(x) + ϕ(Tx), d(y, Ty) + ϕ(y) + ϕ(Ty),

1
2 [d(x, Ty) + ϕ(x) + ϕ(Ty) + d(y, Tx) + ϕ(y) + ϕ(Ty)]},

(iv) l(x, y, d, T, ϕ) = max{d(x, y) + ϕ(x) + ϕ(y), d(y, Ty) + ϕ(y) + ϕ(Ty)} and
(v) ϕ : X → R+ is a lower semicontinuous function.

Theorem 1.10. [11] Let X be a complete metric space. If T is a generalized weakly contractive mapping,
then there exists a unique z ∈ X such that z = Tz and ϕ(z) = 0.

In 2018, Liu, Ansari, Chandok and Radenović[20] generalized the simulation function introduced by
Khojasteh, Shukla and Radenović[14] by using C−class functions with CG property.

Definition 1.11. [20] A mapping G : R+ × R+ → R has the property CG if there exists an CG ≥ 0 such
that
(i) G(s, t) > CG implies s > t, and
(ii) G(t, t) ≤ CG for all s, t ∈ R+.

Example 1.12. [20] The following functions G : R+ ×R+ → R are functions of ∆ that are from Definition
1.2 and having the property CG. For all s, t ∈ R+,
(i) G(s, t) = s− t, CG = r, r ∈ R+,

(ii) G(s, t) = s− (2+t)t
1+t , CG = 0,

(iii) G(s, t) = s
1+kt , k ≥ 1, CG = r

1+k , r ≥ 2.

Definition 1.13. [20]A function ζ : R+×R+ → R is said to be a CG−simulation function if it satisfies the
following conditions:
(ζ4) ζ(0, 0) = 0;
(ζ5) ζ(t, s) < G(s, t) for all t, s > 0; here G : R+ × R+ → R is an element of ∆ which has property CG;
(ζ6) if {tn}, {sn} are sequences in (0,∞) such that lim

n→∞
tn = lim

n→∞
sn > 0 and tn < sn

then lim sup
n→∞

ζ(tn, sn) < CG.

We denote the set of all CG−simulation functions by ZG.

Example 1.14. [20] The following functions ζ belong to ZG.
(i) Let k ∈ R be such that k < 1 and ζ : R+ × R+ → R be the function defined by ζ(t, s) = kG(s, t)− t,

here CG = 0.
(ii) Let k ∈ R be such that k < 1 and let ζ : R+ × R+ → R be the function defined by ζ(t, s) = kG(s, t),

here CG = 1.
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(iii) We define ζ : R+×R+ → R by ζ(t, s) = λs− t, where λ ∈ (0, 1) and G : R+×R+ → R by G(s, t) = s− t
for any s, t ∈ R+. Clearly ζ(0, 0) = 0 and G ∈ ∆ with CG = 0.
Clearly ζ(t, s) = λs− t < s− t = G(s, t) and hence ζ satisfies (ζ5).
If {tn}, {sn} are sequences in (0,∞) such that lim

n→∞
tn = lim

n→∞
sn = k > 0 and tn < sn for all n ∈ N,

then lim sup
n→∞

ζ(tn, sn) = lim sup
n→∞

(λsn − tn) = λk − k = (λ− 1)k < 0.

Therefore ζ satisfies (ζ6) and hence ζ ∈ ZG.

In 1977, Bernfeld, Lakshmikantham and Reddy[9] introduced the concept of fixed point for mappings
that have different domains and ranges which is called PPF (Past, Present and Future) dependent fixed
point, for more details we refer [5, 6, 8, 12, 13, 16, 19].

Let (E, ||.||E) be a Banach space and we denote it simply by E. Let I = [a, b] ⊆ R and E0 = C(I, E),
the set of all continuous functions on I equipped with the supremum norm ||.||E0

and we define it by
||φ||E0

= sup
a≤t≤b

||φ(t)||E for φ ∈ E0.

For a fixed c ∈ I, the Razumikhin classRc of functions in E0 is defined byRc =
{
φ ∈ E0/ ||φ||E0

= ||φ(c)||E
}

.
Clearly every constant function from I to E belongs to Rc so that Rc is a non-empty subset of E0 .

Definition 1.15. [9] Let Rc be the Razumikhin class of continuous functions in E0. We say that
(i) the class Rc is algebraically closed with respect to the difference if φ− ψ ∈ Rc whenever φ, ψ ∈ Rc.
(ii) the class Rc is topologically closed if it is closed with respect to the topology on E0 by the norm ||.||E0

.

The Razumikhin class of functions Rc has the following properties.

Theorem 1.16. [4] Let Rc be the Razumikhin class of functions in E0. Then
(i) for any φ ∈ Rc and α ∈ R, we have αφ ∈ Rc.
(ii) the Razumikhin class Rc is topologically closed with respect to the norm defined on E0.
(iii) ∩Rc

c∈[a,b]
= {φ ∈ E0/φ : I → E is constant} .

Definition 1.17. [9] Let T : E0 → E be a mapping. A function φ ∈ E0 is said to be a PPF dependent
fixed point of T if Tφ = φ(c) for some c ∈ I.

Definition 1.18. [9] Let T : E0 → E be a mapping. Then T is called a Banach type contraction if there
exists k ∈ [0, 1) such that ||Tφ− Tψ||E ≤ k ||φ− ψ||E0

for all φ, ψ ∈ E0.

Theorem 1.19. [9] Let T : E0 → E be a Banach type contraction. Let Rc be algebraically closed with
respect to the difference and topologically closed. Then T has a unique PPF dependent fixed point in Rc.

Definition 1.20. Let c ∈ I. Let T : E0 → E and α : E × E → R+ be two functions. Then T is said to be
an αc−admissible mapping if

α(φ(c), ψ(c)) ≥ 1 =⇒ α(Tφ, Tψ) ≥ 1 (1.4)

for any φ, ψ ∈ E0.

Definition 1.21. Let c ∈ I. Let T : E0 → E and µ : E × E → (0,∞) be two functions. Then T is said to
be a µc−subadmissible mapping if

µ(φ(c), ψ(c)) ≤ 1 =⇒ µ(Tφ, Tψ) ≤ 1 (1.5)

for any φ, ψ ∈ E0.

In 2014, Ciric, Alsulami, Salimi and Vetro[10] introduced the concept of triangular αc−admissible map-
ping with respect to µc as follows.
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Definition 1.22. [10] Let c ∈ I and T : E0 → E. Let α, µ : E × E → R+ be two functions. Then T is said
to be a triangular αc−admissible mapping with respect to µc if

(i) α(φ(c), ψ(c)) ≥ µ(φ(c), ψ(c)) =⇒ α(Tφ, Tψ) ≥ µ(Tφ, Tψ)
and

(ii) α(φ(c), ψ(c)) ≥ µ(φ(c), ψ(c)), α(ψ(c), ϕ(c)) ≥ µ(ψ(c), ϕ(c))
=⇒ α(φ(c), ϕ(c)) ≥ µ(φ(c), ϕ(c))

(1.6)

for any φ, ψ, ϕ ∈ E0.

Note that if µ(x, y) = 1 for any x, y ∈ E, then we say that T is a triangular αc− admissible mapping
and if α(x, y) = 1 for any x, y ∈ E, then we say that T is a triangular µc−subadmissible mapping.

Lemma 1.23. [10] Let T be a triangular αc−admissible mapping with respect to µc. We define the sequence
{φn} by Tφn = φn+1(c) for all n ∈ N∪{0}, where φ0 ∈ Rc is such that α(φ0(c), Tφ0) ≥ µ(φ0(c), Tφ0). Then
α(φm(c), φn(c)) ≥ µ(φm(c), φn(c)) for all m,n ∈ N with m < n.

Remark 1.24. If µ(x, y) = 1 for any x, y ∈ E in Lemma 1.23, we get the following lemma.

Lemma 1.25. Let T be a triangular αc−admissible mapping. We define the sequence {φn} by Tφn = φn+1(c)
for all n ∈ N∪{0}, where φ0 ∈ Rc is such that α(φ0(c), Tφ0) ≥ 1. Then α(φm(c), φn(c)) ≥ 1 for all m,n ∈ N
with m < n.

Remark 1.26. If α(x, y) = 1 for any x, y ∈ E in Lemma 1.23, we get the following lemma.

Lemma 1.27. Let T be a triangular µc−subadmissible mapping. We define the sequence {φn} by Tφn =
φn+1(c) for all n ∈ N ∪ {0}, where φ0 ∈ Rc is such that µ(φ0(c), Tφ0) ≤ 1. Then µ(φm(c), φn(c)) ≤ 1 for all
m,n ∈ N with m < n.

The following lemma is useful to prove our main result.

Lemma 1.28. [6] Let {φn} be a sequence in E0 such that ||φn − φn+1||E0
→ 0 as n → ∞. If {φn} is

not a Cauchy sequence, then there exists an ε > 0 and two subsequences {φmk
} and {φnk

} of {φn} with
mk > nk > k such that ||φnk

− φmk
||E0
≥ ε, ||φnk

− φmk−1||E0
< ε and

i) lim
k→∞

||φnk
− φmk+1||E0

= ε, ii) lim
k→∞

||φnk+1 − φmk
||E0

= ε,

iii) lim
k→∞

||φnk
− φmk

||E0
= ε, iv) lim

k→∞
||φnk+1 − φmk+1||E0

= ε.

In Section 2, we introduce the notion of generalized ZG,α,µ,η,ϕ−contraction with respect to the CG-
simulation function and prove the existence and uniqueness of PPF dependent fixed points of generalized
ZG,α,µ,η,ϕ−contraction with respect to the CG-simulation function in Banach spaces. In Section 3, we draw
some corollaries and an example is provided to illustrate our main result.

2. Existence of PPF dependent fixed points

We denote
Ψ = {η | η : R+ → R+ is continuous, nondecreasing and η(t) = 0 ⇐⇒ t = 0}.

Definition 2.1. Let c ∈ I. Let T : E0 → E be a function and ζ ∈ ZG. If there exist α : E × E → R+,
µ : E × E → (0,∞), η ∈ Ψ and a lower semicontinuous function ϕ : E → R+ such that

ζ(α(φ(c), ψ(c))η(||Tφ− Tψ||E + ϕ(Tφ) + ϕ(Tψ)), µ(φ(c), ψ(c))η(M(φ, ψ))) ≥ CG (2.1)

for any φ, ψ ∈ E0, where
M(φ, ψ) = max{||φ− ψ||E0 + ϕ(φ(c)) + ϕ(ψ(c)), ||φ(c)− Tφ||E + ϕ(φ(c)) + ϕ(Tφ),

||ψ(c)−Tψ||E+ϕ(ψ(c))+ϕ(Tψ), 12 [||φ(c)−Tψ||E+ϕ(φ(c))+ϕ(Tψ)+||ψ(c)−Tφ||E+ϕ(ψ(c))+ϕ(Tφ)]},
then we say that T is a generalized ZG,α,µ,η,ϕ−contraction with respect to ζ.
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Remark 2.2. (i) If ϕ(x) = 0 for any x ∈ E in the inequality (2.1) then T is called a generalized
ZG,α,µ,η−contraction with respect to ζ.

(ii) If ϕ(x) = 0, µ(x, y) = 1 = α(x, y) for any x, y ∈ E in the inequality (2.1) then T is called a
generalized ZG,η−contraction with respect to ζ.

(iii) If ϕ(x) = 0, µ(x, y) = 1 = α(x, y) for any x, y ∈ E and η(t) = t for any t ∈ R+ in the inequality (2.1)
then T is called a generalized ZG−contraction with respect to ζ.

Theorem 2.3. Let c ∈ I. Let T : E0 → E be a function satisfying the following conditions:
(i) T is a generalized ZG,α,µ,η,ϕ−contraction with respect to ζ,

(ii) T is a triangular αc−admissible mapping and triangular µc−subadmissible mapping,
(iii) Rc is algebraically closed with respect to the difference,
(iv) if {φn} is a sequence in E0 such that φn → φ as n→∞, α(φn(c), φn+1(c)) ≥ 1 and µ(φn(c), φn+1(c)) ≤ 1

for any n ∈ N ∪ {0}, then α(φn(c), φ(c)) ≥ 1 and µ(φn(c), φ(c)) ≤ 1 for any n ∈ N ∪ {0} and
(v) there exists φ0 ∈ Rc such that α(φ0(c), Tφ0) ≥ 1 and µ(φ0(c), Tφ0) ≤ 1.

Then T has a PPF dependent fixed point φ∗ ∈ Rc such that ϕ(φ∗(c)) = 0.

Proof. From (v) we have φ0 ∈ Rc such that α(φ0(c), Tφ0) ≥ 1 and µ(φ0(c), Tφ0) ≤ 1.
Let {φn} be a sequence in Rc defined by

Tφn = φn+1(c) (2.2)

for any n = 0, 1, 2, 3... .
Since Rc is algebraically closed with respect to the difference, we have

||φn+1 − φn||E0 = ||φn+1(c)− φn(c)||E (2.3)

for any n = 0, 1, 2, 3... .
Since T is traingular αc−admissible and triangular µc−subadmissible mappings, by Lemma 1.25 and
Lemma 1.27 we have

α(φm(c), φn(c)) ≥ 1 and µ(φm(c), φn(c)) ≤ 1 (2.4)

for any m,n ∈ N with m < n.
If there exists n ∈ N ∪ {0} such that φn = φn+1 then Tφn = φn+1(c) = φn(c) and hence φn ∈ Rc is a PPF
dependent fixed point of T . Suppose that φn 6= φn+1 for any n ∈ N ∪ {0}.
We consider
M(φn, φn+1) = max{||φn − φn+1||E0 + ϕ(φn(c)) + ϕ(φn+1(c)), ||φn(c)− Tφn||E + ϕ(φn(c)) + ϕ(Tφn),

||φn+1(c)− Tφn+1||E + ϕ(φn+1(c)) + ϕ(Tφn+1),
1
2 [||φn(c)−Tφn+1||E+ϕ(φn(c))+ϕ(Tφn+1)+||φn+1(c)−Tφn||E+ϕ(φn+1(c))+ϕ(Tφn)]}

= max{||φn − φn+1||E0 + ϕ(φn(c)) + ϕ(φn+1(c)), ||φn − φn+1||E0 + ϕ(φn(c)) + ϕ(φn+1(c)),
||φn+1 − φn+2||E0 + ϕ(φn+1(c)) + ϕ(φn+2(c)),
1
2 [||φn−φn+2||E0 +ϕ(φn(c))+ϕ(φn+2(c))+||φn+1−φn+1||E0 +ϕ(φn+1(c))+ϕ(φn+1(c))]}

= max{||φn−φn+1||E0 +ϕ(φn(c)) +ϕ(φn+1(c)), ||φn+1−φn+2||E0 +ϕ(φn+1(c)) +ϕ(φn+2(c))}.
Suppose that
M(φn, φn+1) = ||φn+1 − φn+2||E0 + ϕ(φn+1(c)) + ϕ(φn+2(c)).
Since φn+1 6= φn+2, we have ||φn+1−φn+2||E0 > 0 and hence ||φn+1−φn+2||E0 +ϕ(φn+1(c))+ϕ(φn+2(c)) > 0.
Therefore
η(M(φn, φn+1)) = η(||φn+1 − φn+2||E0 + ϕ(φn+1(c)) + ϕ(φn+2(c))) > 0.
Clearly

α(φn(c), φn+1(c))η(||φn+1 − φn+2||E0 + ϕ(φn+1(c)) + ϕ(φn+2(c))) > 0
and

µ(φn(c), φn+1(c))η(M(φn, φn+1)) > 0.
(2.5)

From (2.1), we have
CG ≤ ζ(α(φn(c), φn+1(c))η(||Tφn − Tφn+1||E + ϕ(Tφn) + ϕ(Tφn+1)), µ(φn(c), φn+1(c))η(M(φn, φn+1)))
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= ζ(α(φn(c), φn+1(c))η(||φn+1 − φn+2||E0 + ϕ(φn+1(c)) + ϕ(φn+2(c))),
µ(φn(c), φn+1(c))η(||φn+1 − φn+2||E0 + ϕ(φn+1(c)) + ϕ(φn+2(c))))

< G(µ(φn(c), φn+1(c))η(||φn+1 − φn+2||E0 + ϕ(φn+1(c)) + ϕ(φn+2(c))),
α(φn(c), φn+1(c))η(||φn+1 − φn+2||E0 + ϕ(φn+1(c)) + ϕ(φn+2(c)))).

(by (2.5) and (ζ5))
Now by the property CG, we get
µ(φn(c), φn+1(c))η(||φn+1 − φn+2||E0 + ϕ(φn+1(c)) + ϕ(φn+2(c)))

> α(φn(c), φn+1(c))η(||φn+1 − φn+2||E0 + ϕ(φn+1(c)) + ϕ(φn+2(c))).
Clearly
η(||φn+1 − φn+2||E0 + ϕ(φn+1(c)) + ϕ(φn+2(c)))

≥ µ(φn(c), φn+1(c))η(||φn+1 − φn+2||E0 + ϕ(φn+1(c)) + ϕ(φn+2(c)))
> α(φn(c), φn+1(c))η(||φn+1 − φn+2||E0 + ϕ(φn+1(c)) + ϕ(φn+2(c)))
≥ η(||φn+1 − φn+2||E0 + ϕ(φn+1(c)) + ϕ(φn+2(c))),

a contradiction.
Therefore
M(φn, φn+1) = ||φn − φn+1||E0 + ϕ(φn(c)) + ϕ(φn+1(c)) and hence
||φn − φn+1||E0 + ϕ(φn(c)) + ϕ(φn+1(c)) > ||φn+1 − φn+2||E0 + ϕ(φn+1(c)) + ϕ(φn+2(c)).
Let dn = ||φn − φn+1||E0 + ϕ(φn(c)) + ϕ(φn+1(c)).
Then the sequence {dn} is a decreasing sequence and hence convergent.
Let lim

n→∞
dn = k (say). Suppose that k > 0.

Since φn 6= φn+1 we have dn = ||φn − φn+1||E0 + ϕ(φn(c)) + ϕ(φn+1(c)) > 0 and which implies that
η(dn) = η(||φn − φn+1||E0 + ϕ(φn(c)) + ϕ(φn+1(c))) > 0. Clearly µ(φn(c), φn+1(c))η(dn) > 0.
From (2.1), we have

CG ≤ ζ(α(φn(c), φn+1(c))η(||φn+1 − φn+2||E0 + ϕ(φn+1(c)) + ϕ(φn+2(c))),
µ(φn(c), φn+1(c))η(||φn − φn+1||E0 + ϕ(φn(c)) + ϕ(φn+1(c))))

(2.6)

< G(µ(φn(c), φn+1(c))η(dn), α(φn(c), φn+1(c))η(dn+1)). (by(2.5) and (ζ5))
Now by the property CG, we get that µ(φn(c), φn+1(c))η(dn) > α(φn(c), φn+1(c))η(dn+1).
Clearly η(dn) ≥ µ(φn(c), φn+1(c))η(dn) > α(φn(c), φn+1(c))η(dn+1) ≥ η(dn+1).
On applying limits as n→∞, we get that
lim
n→∞

µ(φn(c), φn+1(c))η(dn) = lim
n→∞

α(φn(c), φn+1(c))η(dn+1) = η(k) > 0.

On applying limit superior to (2.6), we get that
CG ≤ lim sup

n→∞
ζ(α(φn(c), φn+1(c))η(||φn+1 − φn+2||E0 + ϕ(φn+1(c)) + ϕ(φn+2(c))),

µ(φn(c), φn+1(c))η(||φn − φn+1||E0 + ϕ(φn(c)) + ϕ(φn+1(c))))
< CG,

a contadiction.
Therefore k = 0 and hence lim

n→∞
[||φn − φn+1||E0 + ϕ(φn(c)) + ϕ(φn+1(c))] = 0.

That is

lim
n→∞

||φn − φn+1||E0 = 0 and lim
n→∞

ϕ(φn(c)) = 0. (2.7)

We now show that the sequence {φn} is a Cauchy sequence in Rc.
Suppose that the sequence {φn} is not a Cauchy sequence. Then there exists an ε > 0 and two subsequences
{φmk

} and {φnk
} of {φn} with mk > nk > k such that ||φnk

− φmk
||E0 ≥ ε , ||φnk

− φmk−1||E0 < ε and by
Lemma 1.28 we get

lim
k→∞

||φnk
− φmk

||E0 = ε (2.8)

and lim
k→∞

||φnk
− φmk+1||E0

= ε = lim
k→∞

||φnk+1 − φmk
||E0

= lim
k→∞

||φnk+1 − φmk+1||E0
.

Therefore lim
k→∞

dnkmk
= lim

k→∞
[||φnk

− φmk
||E0

+ ϕ(φnk
(c)) + ϕ(φmk

(c))] = ε and
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lim
k→∞

dnk+1mk+1
= lim

k→∞
[||φnk+1 − φmk+1||E0

+ ϕ(φnk+1(c)) + ϕ(φmk+1(c))] = ε.

Since η is continuous, we get that

lim
k→∞

η(dnk+1mk+1
) = η(ε) > 0. (2.9)

We consider
M(φnk

, φmk
) = max{||φnk

− φmk
||E0 + ϕ(φnk

(c)) + ϕ(φmk
(c)), ||φnk

(c)− Tφnk
||E + ϕ(φnk

(c)) + ϕ(Tφnk
),

||φmk
(c)− Tφmk

||E + ϕ(φmk
(c)) + ϕ(Tφmk

),
1
2 [||φnk

(c)− Tφmk
||E + ϕ(φnk

(c)) + ϕ(Tφmk
) + ||φmk

(c)− Tφnk
||E + ϕ(φmk

(c)) + ϕ(Tφnk
)]}

= max{||φnk
− φmk

||E0 +ϕ(φnk
(c)) + ϕ(φmk

(c)), ||φnk
− φnk+1||E0 +ϕ(φnk

(c)) + ϕ(φnk+1(c)),
||φmk

− φmk+1||E0 + ϕ(φmk
(c)) + ϕ(φmk+1(c)),

1
2 [||φnk

−φmk+1||E0 +ϕ(φnk
(c))+ϕ(φmk+1(c))+ ||φmk

−φnk+1||E0 +ϕ(φmk
(c))+ϕ(φnk+1(c))]}

= max{dnkmk
, dnknk+1

, dmkmk+1
, 12 [dnkmk+1

+ dmknk+1
]}.

On applying limits as k →∞, we get that lim
k→∞

M(φnk
, φmk

) = ε.

Since η is continuous, we get that

lim
k→∞

η(M(φnk
, φmk

)) = η(ε) > 0. (2.10)

From (2.9) and (2.10), there exists k1 ∈ N such that

η(M(φnk
, φmk

)) > η(ε)
2 > 0

and

η(dnk+1mk+1
) > η(ε)

2 > 0

(2.11)

for any k ≥ k1.
From (2.4), we have

α(φnk
(c), φmk

(c))η(dnk+1mk+1
) ≥ η(dnk+1mk+1

) > 0 (2.12)

for any k ≥ k1.
Clearly

µ(φnk
(c), φmk

(c))η(M(φnk
, φmk

)) > 0 (2.13)

for any k ≥ k1.
For any k ≥ k1, from (2.1) we have
CG ≤ ζ(α(φnk

(c), φmk
(c))η(||Tφnk

− Tφmk
||E + ϕ(Tφnk

) + ϕ(Tφmk
)), µ(φnk

(c), φmk
(c))η(M(φnk

, φmk
)))

= ζ(α(φnk
(c), φmk

(c))η(||φnk+1−φmk+1||E0+ϕ(φnk+1(c))+ϕ(φmk+1(c))), µ(φnk
(c), φmk

(c))η(M(φnk
, φmk

)))

= ζ(α(φnk
(c), φmk

(c))η(dnk+1mk+1
), µ(φnk

(c), φmk
(c))η(M(φnk

, φmk
))) (2.14)

< G(µ(φnk
(c), φmk

(c))η(M(φnk
, φmk

)), α(φnk
(c), φmk

(c))η(dnk+1mk+1
)). (by (2.12),(2.13) and (ζ5))

Now by the property CG, we have

µ(φnk
(c), φmk

(c))η(M(φnk
, φmk

)) > α(φnk
(c), φmk

(c))η(dnk+1mk+1
). (2.15)

Clearly
η(M(φnk

, φmk
)) ≥ µ(φnk

(c), φmk
(c))η(M(φnk

, φmk
))

> α(φnk
(c), φmk

(c))η(dnk+1mk+1
) (by(2.15))

≥ η(dnk+1mk+1
).

On applying limits as k →∞, we get that

lim
k→∞

µ(φnk
(c), φmk

(c))η(M(φnk
, φmk

)) = lim
k→∞

α(φnk
(c), φmk

(c))η(dnk+1mk+1
) = η(ε) > 0. (2.16)
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On applying limit superior as k →∞ to (2.14), by (2.15) ,(2.16) and (ζ6) we get
CG ≤ lim sup

k→∞
ζ(α(φnk

(c), φmk
(c))η(dnk+1mk+1

), µ(φnk
(c), φmk

(c))η(M(φnk
, φmk

))) < CG,

a contradiction.
Therefore the sequence {φn} is a Cauchy sequence in Rc. Since E0 is complete, there exists φ∗ ∈ E0 such
that φn → φ∗. Since Rc is topologically closed, we have φ∗ ∈ Rc. Clearly ||φ∗||E0 = ||φ∗(c)||E . (since φ∗ ∈ Rc)
Since ϕ is lower semicontinuous function, we have ϕ(φ∗(c)) ≤ lim inf

n→∞
ϕ(φn(c)) = 0 and hence ϕ(φ∗(c)) = 0.

We now show that Tφ∗ = φ∗(c). Suppose that Tφ∗ 6= φ∗(c).
From (2.4) we have α(φn(c), φn+1(c)) ≥ 1 and µ(φn(c), φn+1(c)) ≤ 1 for any n ∈ N ∪ {0}.
From (iv) we get that α(φn(c), φ∗(c)) ≥ 1 and µ(φn(c), φ∗(c)) ≤ 1 for any n ∈ N ∪ {0}.
We consider
M(φn, φ

∗) = max{||φn − φ∗||E0 + ϕ(φn(c)) + ϕ(φ∗(c)), ||φn(c)− Tφn||E + ϕ(φn(c)) + ϕ(Tφn),
||φ∗(c)− Tφ∗||E + ϕ(φ∗(c)) + ϕ(Tφ∗),
1
2 [||φn(c)− Tφ∗||E + ϕ(φn(c)) + ϕ(Tφ∗) + ||φ∗(c)− Tφn||E + ϕ(φ∗(c)) + ϕ(Tφn)]}

= max{||φn − φ∗||E0 + ϕ(φn(c)) + ϕ(φ∗(c)), ||φn − φn+1||E0 + ϕ(φn(c)) + ϕ(φn+1(c)),
||φ∗(c)− Tφ∗||E + ϕ(φ∗(c)) + ϕ(Tφ∗),
1
2 [||φn(c)− Tφ∗||E + ϕ(φn(c)) + ϕ(Tφ∗) + ||φ∗ − φn+1||E0 + ϕ(φ∗(c)) + ϕ(φn+1(c))]}.

If M(φn, φ
∗) = 0 then Tφ∗ = φ∗(c), a contradiction.

Therefore M(φn, φ
∗) > 0 and hence η(M(φn, φ

∗)) > 0.
Clearly

µ(φn(c), φ∗(c))η(M(φn, φ
∗)) > 0. (2.17)

On applying limits as n→∞ to M(φn, φ
∗), we get that lim

n→∞
M(φn, φ

∗) = ||φ∗(c)− Tφ∗||E + ϕ(Tφ∗).

Since η is continuous, we get that lim
n→∞

η(M(φn, φ
∗)) = η(||φ∗(c)−Tφ∗||E+ϕ(Tφ∗)) > 0. (since Tφ∗ 6= φ∗(c))

If ||Tφn − Tφ∗||E + ϕ(Tφn) + ϕ(Tφ∗) = 0, then φn+1(c) = Tφn = Tφ∗.
On applying limits as n→∞, we get φ∗(c) = Tφ∗, a contradiction.
Therefore ||Tφn − Tφ∗||E + ϕ(Tφn) + ϕ(Tφ∗) > 0 and hence η(||Tφn − Tφ∗||E + ϕ(Tφn) + ϕ(Tφ∗)) > 0.
Clearly

α(φn(c), φ∗(c))η(||Tφn − Tφ∗||E + ϕ(Tφn) + ϕ(Tφ∗)) > 0. (2.18)

From (2.1) we have
CG ≤ ζ(α(φn(c), φ∗(c))η(||Tφn − Tφ∗||E + ϕ(Tφn) + ϕ(Tφ∗)), µ(φn(c), φ∗(c))η(M(φn, φ

∗)))
< G(µ(φn(c), φ∗(c))η(M(φn, φ

∗)), α(φn(c), φ∗(c))η(||Tφn − Tφ∗||E + ϕ(Tφn) + ϕ(Tφ∗))).
Now by the property CG, we get that

µ(φn(c), φ∗(c))η(M(φn, φ
∗)) > α(φn(c), φ∗(c))η(||Tφn − Tφ∗||E + ϕ(Tφn) + ϕ(Tφ∗)). (2.19)

Clearly
η(M(φn, φ

∗)) ≥ µ(φn(c), φ∗(c))η(M(φn, φ
∗))

> α(φn(c), φ∗(c))η(||Tφn − Tφ∗||E + ϕ(Tφn) + ϕ(Tφ∗))
≥ η(||Tφn − Tφ∗||E + ϕ(Tφn) + ϕ(Tφ∗))
= η(||φn+1(c)− Tφ∗||E + ϕ(φn+1(c)) + ϕ(Tφ∗)).

On applying limits as n→∞, we get
lim
n→∞

α(φn(c), φ∗(c))η(||Tφn − Tφ∗||E + ϕ(Tφn) + ϕ(Tφ∗))

= lim
n→∞

µ(φn(c), φ∗(c))η(M(φn, φ
∗)) = η(||φ∗(c)− Tφ∗||E + ϕ(Tφ∗)) > 0.

From (2.1) we have
CG ≤ ζ(α(φn(c), φ∗(c))η(||Tφn − Tφ∗||E + ϕ(Tφn) + ϕ(Tφ∗)), µ(φn(c), φ∗(c))η(M(φn, φ

∗))).
On applying limit superior as n→∞, by (ζ6) we get that
CG ≤ lim sup

n→∞
ζ(α(φn(c), φ∗(c))η(||Tφn − Tφ∗||E + ϕ(Tφn) + ϕ(Tφ∗)), µ(φn(c), φ∗(c))η(M(φn, φ

∗)))

< CG,
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a contradiction.
Therefore Tφ∗ = φ∗(c) and hence φ∗ ∈ Rc is a PPF dependent fixed point of T such that ϕ(φ∗(c)) = 0.

Theorem 2.4. In addition to the assumptions of Theorem 2.3 assume the following.
If α(x, y) ≥ 1, µ(x, y) ≤ 1 for any x, y ∈ E and T is one-one then T has a unique PPF dependent fixed
point in Rc.

Proof. By Theorem 2.3, T has a PPF dependent fixed point φ∗ ∈ Rc such that ϕ(φ∗(c)) = 0.
We now show that T has a unique PPF dependent fixed point in Rc.
Let φ, ψ ∈ Rc be two PPF dependent fixed points of T such that ϕ(φ(c)) = 0 and ϕ(ψ(c)) = 0.
Then we get Tφ = φ(c) and Tψ = ψ(c). Since Rc is algebraically closed with respect to the difference,
we have ||φ− ψ||E0 = ||φ(c)− ψ(c)||E . Suppose that φ 6= ψ.
If ||Tφ− Tψ||E = 0 then Tφ = Tψ. Since T is one-one we have φ = ψ, a contradiction.
Therefore ||Tφ− Tψ||E 6= 0 and hence ||Tφ− Tψ||E > 0.
Clearly η(||Tφ− Tψ||E + ϕ(Tφ) + ϕ(Tψ)) = η(||Tφ− Tψ||E + ϕ(φ(c)) + ϕ(ψ(c))) = η(||Tφ− Tψ||E) > 0
and hence α(φ(c), ψ(c))η(||Tφ− Tψ||E + ϕ(Tφ) + ϕ(Tψ)) > 0.
We consider
M(φ, ψ) = max{||φ− ψ||E0 + ϕ(φ(c)) + ϕ(ψ(c)), ||φ(c)− Tφ||E + ϕ(φ(c)) + ϕ(Tφ),

||ψ(c)− Tψ||E + ϕ(ψ(c)) + ϕ(Tψ),
1
2 [||φ(c)− Tψ||E + ϕ(φ(c)) + ϕ(Tψ) + ||ψ(c)− Tφ||E + ϕ(ψ(c)) + ϕ(Tφ)]}

= max{||φ− ψ||E0 ,
||φ(c)−ψ(c)||E+||ψ(c)−φ(c)||E

2 }
= max{||φ−ψ||E0 , ||φ−ψ||E0} = ||φ−ψ||E0 and hence µ(φ(c), ψ(c))η(M(φ, ψ)) > 0. (since φ 6= ψ)

From (2.1), we get that
CG ≤ ζ(α(φ(c), ψ(c))η(||Tφ− Tψ||E + ϕ(Tφ) + ϕ(Tψ)), µ(φ(c), ψ(c))η(M(φ, ψ)))

< G(µ(φ(c), ψ(c))η(M(φ, ψ)), α(φ(c), ψ(c))η(||Tφ− Tψ||E + ϕ(Tφ) + ϕ(Tψ))).
By the property CG, we get that

µ(φ(c), ψ(c))η(M(φ, ψ)) > α(φ(c), ψ(c))η(||Tφ− Tψ||E + ϕ(Tφ) + ϕ(Tψ)). (2.20)

Clearly
η(||φ− ψ||E0) = η(M(φ, ψ))

≥ µ(φ(c), ψ(c))η(M(φ, ψ))
> α(φ(c), ψ(c))η(||Tφ− Tψ||E + ϕ(Tφ) + ϕ(Tψ) (by (2.20))
≥ η(||Tφ− Tψ||E + ϕ(Tφ) + ϕ(Tψ))
= η(||Tφ− Tψ||E) = η(||φ(c)− ψ(c)||E)
= η(||φ− ψ||E0),

a contradiction.
Therefore φ = ψ and hence T has a unique PPF dependent fixed point in Rc.

3. Corollaries and Examples

Corollary 3.1. Let c ∈ I. Let T : E0 → E be a function satisfying the following conditions:
(i) T is a generalized ZG,α,µ,η−contraction with respect to ζ,

(ii) T is a triangular αc−admissible mapping and triangular µc−subadmissible mapping,
(iii) Rc is algebraically closed with respect to the difference,
(iv) if {φn} is a sequence in E0 such that φn → φ as n→∞, α(φn(c), φn+1(c)) ≥ 1 and µ(φn(c), φn+1(c)) ≤ 1

for any n ∈ N ∪ {0} then α(φn(c), φ(c)) ≥ 1 and µ(φn(c), φ(c)) ≤ 1 for any n ∈ N ∪ {0} and
(v) there exists φ0 ∈ Rc such that α(φ0(c), Tφ0) ≥ 1 and µ(φ0(c), Tφ0) ≤ 1.

Then T has a PPF dependent fixed point in Rc.

Proof. By taking ϕ(x) = 0 for any x ∈ E in Theorem 2.3 we obtain the desired result.
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Remark 3.2. In addition to the hypotheses of Corollary 3.1 assume the following.
If α(x, y) ≥ 1, µ(x, y) ≤ 1 for any x, y ∈ E and T is one-one then T has a unique PPF dependent fixed point
in Rc.

By choosing α(x, y) = 1 = µ(x, y) for any x, y ∈ E in Corollary 3.1 we get the following corollary.

Corollary 3.3. Let c ∈ I. Let T : E0 → E be a function satisfying the following conditions:
(i) T is a generalized ZG,η−contraction with respect to ζ and

(ii) Rc is algebraically closed with respect to the difference.
Then T has a PPF dependent fixed point in Rc.

By choosing η(t) = t for any t ∈ R+ in Corollary 3.3 we get the following corollary.

Corollary 3.4. Let c ∈ I. Let T : E0 → E be a function satisfying the following conditions:
(i) T is a generalized ZG−contraction with respect to ζ and

(ii) Rc is algebraically closed with respect to the difference.
Then T has a PPF dependent fixed point in Rc.

By choosing α(x, y) = 1 = µ(x, y) for any x, y ∈ E, η(t) = t for any t ∈ R+ and CG = 0 in Theorem
2.3 we get the following corollary.

Corollary 3.5. Let c ∈ I and ζ ∈ ZG. Let T : E0 → E be a function satisfying the following conditions:
(i) if there exists a lower semicontinuous function ϕ : E → R+ such that

ζ(||Tφ− Tψ||E + ϕ(Tφ) + ϕ(Tψ),M(φ, ψ)) ≥ 0
for any φ, ψ ∈ E0, where
M(φ, ψ) = max{||φ− ψ||E0 + ϕ(φ(c)) + ϕ(ψ(c)), ||φ(c)− Tφ||E + ϕ(φ(c)) + ϕ(Tφ),

||ψ(c)− Tψ||E + ϕ(ψ(c)) + ϕ(Tψ),
1
2 [||φ(c)− Tψ||E + ϕ(φ(c)) + ϕ(Tψ) + ||ψ(c)− Tφ||E + ϕ(ψ(c)) + ϕ(Tφ)]} and

(ii) Rc is algebraically closed with respect to the difference.
Then T has a PPF dependent fixed point in Rc.

By choosing µ(x, y) = 1 for any x, y ∈ E, η(t) = t for any t ∈ R+ and CG = 0 in Corollary 3.1 we get
the following corollary.

Corollary 3.6. Let c ∈ I and ζ ∈ ZG. Let T : E0 → E be a function satisfying the following conditions:
(i) if there exists α : E × E → R+ such that

ζ(α(φ(c), ψ(c))||Tφ− Tψ||E ,M(φ, ψ)) ≥ 0
for any φ, ψ ∈ E0, where
M(φ, ψ) = max{||φ− ψ||E0 , ||φ(c)− Tφ||E , ||ψ(c)− Tψ||E , 12 [||φ(c)− Tψ||E + ||ψ(c)− Tφ||E ]},

(ii) T a triangular αc−admissible mapping,
(iii) Rc is algebraically closed with respect to the difference,
(iv) if {φn} is a sequence in E0 such that φn → φ as n→∞ and α(φn(c), φn+1(c)) ≥ 1 for any n ∈ N∪{0}

then α(φn(c), φ(c)) ≥ 1 for any n ∈ N ∪ {0} and
(v) there exists φ0 ∈ Rc such that α(φ0(c), Tφ0) ≥ 1.

Then T has a PPF dependent fixed point in Rc.
Moreover, if α(x, y) ≥ 1 for any x, y ∈ E and T is one-one then T has a unique fixed point in Rc.

By choosing α(x, y) = 1 for any x, y ∈ E in Corollary 3.6 we get the following corollary.

Corollary 3.7. Let c ∈ I and ζ ∈ ZG. Let T : E0 → E be a function satisfying the following conditions:
(i) ζ(||Tφ− Tψ||E ,M(φ, ψ)) ≥ 0

for any φ, ψ ∈ E0, where
M(φ, ψ) = max{||φ− ψ||E0 , ||φ(c)− Tφ||E , ||ψ(c)− Tψ||E , 12 [||φ(c)− Tψ||E + ||ψ(c)− Tφ||E ]} and

(ii) Rc is algebraically closed with respect to the difference.
Then T has a PPF dependent fixed point in Rc.
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Remark 3.8. In addition to the hypotheses of Corollary 3.3 (Corollary 3.4, Corollary 3.5, Corollary 3.7)
assume the following.
If T is one-one then T has a unique PPF dependent fixed point in Rc.

By choosing ζ(t, s) = λs− t, G(s, t) = s− t for any s, t ∈ R+, CG = 0 and λ ∈ (0, 1) in Theorem 2.3 we
get the following corollary.

Corollary 3.9. Let c ∈ I. Let T : E0 → E be a function satisfying the following conditions:
(i) if there exist α : E × E → R+, µ : E × E → (0,∞), η ∈ Ψ, λ ∈ (0, 1) and a lower semicontinuous

function ϕ : E → R+ such that

α(φ(c), ψ(c))η(||Tφ− Tψ||E + ϕ(Tφ) + ϕ(Tψ)) ≤ λµ(φ(c), ψ(c))η(M(φ, ψ)) (3.1)

for any φ, ψ ∈ E0, where
M(φ, ψ) = max{||φ− ψ||E0 + ϕ(φ(c)) + ϕ(ψ(c)), ||φ(c)− Tφ||E + ϕ(φ(c)) + ϕ(Tφ),

||ψ(c)− Tψ||E + ϕ(ψ(c)) + ϕ(Tψ),
1
2 [||φ(c)− Tψ||E + ϕ(φ(c)) + ϕ(Tψ) + ||ψ(c)− Tφ||E + ϕ(ψ(c)) + ϕ(Tφ)]},

(ii) T is a triangular αc−admissible mapping and triangular µc−subadmissible mapping,
(iii) Rc is algebraically closed with respect to the difference,
(iv) if {φn} is a sequence in E0 such that φn → φ as n→∞, α(φn(c), φn+1(c)) ≥ 1 and µ(φn(c), φn+1(c)) ≤ 1

for any n ∈ N ∪ {0} then α(φn(c), φ(c)) ≥ 1 and µ(φn(c), φ(c)) ≤ 1 for any n ∈ N ∪ {0} and
(v) there exists φ0 ∈ Rc such that α(φ0(c), Tφ0) ≥ 1 and µ(φ0(c), Tφ0) ≤ 1.

Then T has a PPF dependent fixed point φ∗ ∈ Rc such that ϕ(φ∗(c)) = 0.

By choosing η(t) = t, t ∈ R+ in Corollary 3.9 we get the following corollary.

Corollary 3.10. Let c ∈ I. Let T : E0 → E be a function satisfying the following conditions:
(i) if there exist α : E × E → R+, µ : E × E → (0,∞), λ ∈ (0, 1) and a lower semicontinuous

function ϕ : E → R+ such that

α(φ(c), ψ(c))(||Tφ− Tψ||E + ϕ(Tφ) + ϕ(Tψ)) ≤ λµ(φ(c), ψ(c))M(φ, ψ) (3.2)

for any φ, ψ ∈ E0, where
M(φ, ψ) = max{||φ− ψ||E0 + ϕ(φ(c)) + ϕ(ψ(c)), ||φ(c)− Tφ||E + ϕ(φ(c)) + ϕ(Tφ),

||ψ(c)− Tψ||E + ϕ(ψ(c)) + ϕ(Tψ),
1
2 [||φ(c)− Tψ||E + ϕ(φ(c)) + ϕ(Tψ) + ||ψ(c)− Tφ||E + ϕ(ψ(c)) + ϕ(Tφ)]},

(ii) T is a triangular αc−admissible mapping and triangular µc−subadmissible mapping,
(iii) Rc is algebraically closed with respect to the difference,
(iv) if {φn} is a sequence in E0 such that φn → φ as n→∞, α(φn(c), φn+1(c)) ≥ 1 and µ(φn(c), φn+1(c)) ≤ 1

for any n ∈ N ∪ {0} then α(φn(c), φ(c)) ≥ 1 and µ(φn(c), φ(c)) ≤ 1 for any n ∈ N ∪ {0} and
(v) there exists φ0 ∈ Rc such that α(φ0(c), Tφ0) ≥ 1 and µ(φ0(c), Tφ0) ≤ 1.

Then T has a PPF dependent fixed point φ∗ ∈ Rc such that ϕ(φ∗(c)) = 0.

By choosing ϕ(x) = 0 for any x ∈ E in Corollay 3.10 we get the following corollary.

Corollary 3.11. Let c ∈ I. Let T : E0 → E be a function satisfying the following conditions:
(i) if there exist α : E × E → R+, µ : E × E → (0,∞) and λ ∈ (0, 1) such that

α(φ(c), ψ(c))||Tφ− Tψ||E ≤ λµ(φ(c), ψ(c))M(φ, ψ) (3.3)

for any φ, ψ ∈ E0, where
M(φ, ψ) = max{||φ− ψ||E0 , ||φ(c)− Tφ||E , ||ψ(c)− Tψ||E , 12 [||φ(c)− Tψ||E + ||ψ(c)− Tφ||E ]},

(ii) T is a triangular αc−admissible mapping and triangular µc−subadmissible mapping,
(iii) Rc is algebraically closed with respect to the difference,
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(iv) if {φn} is a sequence in E0 such that φn → φ as n→∞, α(φn(c), φn+1(c)) ≥ 1 and µ(φn(c), φn+1(c)) ≤ 1
for any n ∈ N ∪ {0} then α(φn(c), φ(c)) ≥ 1 and µ(φn(c), φ(c)) ≤ 1 for any n ∈ N ∪ {0} and

(v) there exists φ0 ∈ Rc such that α(φ0(c), Tφ0) ≥ 1 and µ(φ0(c), Tφ0) ≤ 1.
Then T has a PPF dependent fixed point in Rc.

Remark 3.12. In addition to the hypotheses of Corollary 3.9 (Corollary 3.10, Corollary 3.11) assume the
following.
If α(x, y) ≥ 1, µ(x, y) ≤ 1 for any x, y ∈ E and T is one-one then T has a unique PPF dependent fixed point
in Rc.

By choosing α(x, y) = 1 = µ(x, y) for any x, y ∈ E in Corollary 3.11 we get the following corollary.

Corollary 3.13. Let c ∈ I. Let T : E0 → E be a function satisfying the following conditions:
(i) if there exists λ ∈ (0, 1) such that ||Tφ− Tψ||E ≤ λM(φ, ψ) for any φ, ψ ∈ E0, where
M(φ, ψ) = max{||φ− ψ||E0 , ||φ(c)− Tφ||E , ||ψ(c)− Tψ||E , 12 [||φ(c)− Tψ||E + ||ψ(c)− Tφ||E ]} and

(ii) Rc is algebraically closed with respect to the difference.
Then T has a PPF dependent fixed point in Rc. Moreover, if T is one-one then T has a unique PPF
dependent fixed point in Rc.

The following is an example in support of Theorem 2.3. Further, this example illustrates that if T is not
one-one then T may have more than one fixed point.

Example 3.14. Let E = R, c = 1 ∈ I = [12 , 2] ⊆ R, E0 = C(I, E).
We define T : E0 → E, α : E × E → R+, µ : E × E → (0,∞) by

Tφ =


−2 if φ(c) < 0
φ(c)

11−2φ(c) if 0 ≤ φ(c) < 2
1
2 if φ(c) ≥ 2,

α(x, y) =

{
1 if x ≥ y
0 if x < y,

and

µ(x, y) =

{
1√
2

if x ≥ y
2 if x < y.

We first prove that T is an αc−admissible mapping.
For any φ, ψ ∈ E0, we suppose that α(φ(c), ψ(c)) ≥ 1. From the definition of α, we get φ(c) ≥ ψ(c).
Case (i): Suppose that 0 ≤ φ(c), ψ(c) < 2.

Clearly 11− 2φ(c) ≤ 11− 2ψ(c) and which implies that 1
11−2φ(c) ≥

1
11−2ψ(c) .

Therefore Tφ ≥ Tψ and hence α(Tφ, Tψ) ≥ 1.
Case (ii): Suppose that φ(c), ψ(c) ≥ 2.

Clearly Tφ = 1
2 = Tψ and which implies that α(Tφ, Tψ) ≥ 1.

Case (iii): Suppose that φ(c), ψ(c) < 0.
Clearly Tφ = −2 = Tψ and which implies that α(Tφ, Tψ) ≥ 1.
Case (iv): Suppose that 0 ≤ φ(c) < 2 and ψ(c) < 0.

Since φ(c) ≤ 22
3 we have Tφ = φ(c)

11−2φ(c) ≥ −2 = Tψ and which implies that α(Tφ, Tψ) ≥ 1.

Case (v): Suppose that φ(c) ≥ 2 and ψ(c) < 0.

Clearly Tφ = 1
2 > −2 = Tψ and which implies that α(Tφ, Tψ) ≥ 1.

Case (vi): Suppose that φ(c) ≥ 2 and 0 ≤ ψ(c) < 2.

Since ψ(c) ≤ 11
4 we have Tφ = 1

2 ≥
ψ(c)

11−2ψ(c) = Tψ and which implies that α(Tφ, Tψ) ≥ 1.
From the above cases, we get that T is an αc−admissible mapping.
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For any φ, ψ, γ ∈ E0, we suppose that α(φ(c), ψ(c)) ≥ 1 and α(ψ(c), γ(c)) ≥ 1.
From the definition of α, we get φ(c) ≥ ψ(c) ≥ γ(c). Therefore φ(c) ≥ γ(c) and hence α(φ(c), γ(c)) ≥ 1.
Therefore T is a traingular αc−admissible mapping.
Similarly, we can prove that T is a triangular µc−subadmissible mapping.
Let λ = 1√

2
. Then λ ∈ (0, 1).

We define ϕ : E → R+ by

ϕ(x) =


0 if x ≤ 0
x if 0 ≤ x < 2
0 if x ≥ 2.

Clearly ϕ is a lower semicontinuous function.
Let φ, ψ ∈ E0.
If φ(c) < ψ(c) then from the definition of α, the inequality (3.2) trivially holds.
Without loss of generality, we assume that φ(c) ≥ ψ(c).
From the definition of α, we get Tφ ≥ Tψ.
We consider
||Tφ− Tψ||E + ϕ(Tφ) + ϕ(Tψ) ≤ Tφ− Tψ + Tφ+ Tψ = 2 Tφ.
Therefore

α(φ(c), ψ(c))(||Tφ− Tψ||E + ϕ(Tφ) + ϕ(Tψ)) ≤ 2 Tφ. (3.4)

Case (i): Suppose that Tφ = φ(c).
If φ ∈ Rc then φ is a PPF dependent fixed point of T and hence the result holds.
Let us suppose φ /∈ Rc.
We define ψ1 : I → E by ψ1(x) = φ(c), x ∈ I. Clearly ψ1 ∈ Rc.
From the definition of T , we have

Tψ1 =


−2 if ψ1(c) ≤ 0
ψ1(c)

11−2ψ1(c)
if 0 ≤ ψ1(c) < 2

1
2 if ψ1(c) ≥ 2.

That is

Tψ1 =


−2 if φ(c) ≤ 0
φ(c)

11−2φ(c) if 0 ≤ φ(c) < 2
1
2 if φ(c) ≥ 2.

Therefore Tψ1 = Tφ = φ(c) = ψ1(c).
Hence ψ1 is a PPF dependent fixed point of T in Rc and the result follows.
Case (ii): Suppose that φ(c) < Tφ.
Clearly φ(c) < −2 and hence Tφ = −2.
We consider
M(φ, ψ) ≥ ||φ(c)− Tφ||E + ϕ(φ(c)) + ϕ(Tφ)

= Tφ− φ(c) = −2− φ(c) and hence

λ µ(φ(c), ψ(c))M(φ, ψ) ≥ −2−φ(c)2 ≥ −4 (since φ(c) ≤ 6)
= 2×−2 = 2 Tφ
≥ α(φ(c), ψ(c))(||Tφ− Tψ||E + ϕ(Tφ) + ϕ(Tψ)). (by (3.4))

Therefore the inequality (3.2) is holds.
Case (iii): Suppose that φ(c) > Tφ.
Sub-case (i): Suppose that −2 < φ(c) < 0.
Clearly Tφ = −2.
We consider
M(φ, ψ) ≥ ||φ(c)− Tφ||E + ϕ(φ(c)) + ϕ(Tφ)

= φ(c)− Tφ = φ(c) + 2 and hence
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λ µ(φ(c), ψ(c))M(φ, ψ) ≥ φ(c)+2
2 ≥ −4 (since φ(c) ≥ −10)

= 2×−2 = 2 Tφ
≥ α(φ(c), ψ(c))(||Tφ− Tψ||E + ϕ(Tφ) + ϕ(Tψ)). (by (3.4))

Therefore the inequality (3.2) is holds.
Sub-case (ii): Suppose that 0 < φ(c) < 2.

Clearly Tφ = φ(c)
11−2φ(c) .

We consider
M(φ, ψ) ≥ ||φ(c)− Tφ||E + ϕ(φ(c)) + ϕ(Tφ)

= φ(c)− Tφ+ φ(c) + Tφ = 2 φ(c) and hence
λ µ(φ(c), ψ(c))M(φ, ψ) ≥ φ(c) ≥ 2 Tφ (since φ(c) ≤ 9

2)
≥ α(φ(c), ψ(c))(||Tφ− Tψ||E + ϕ(Tφ) + ϕ(Tψ)). (by (3.4))

Therefore the inequality (3.2) is holds.
Sub-case (iii): Suppose that φ(c) ≥ 2.

Clearly Tφ = 1
2 .

We consider
M(φ, ψ) ≥ ||φ(c)− Tφ||E + ϕ(φ(c)) + ϕ(Tφ)

= φ(c)− Tφ+ 0 + Tφ = φ(c) and hence

λ µ(φ(c), ψ(c))M(φ, ψ) ≥ φ(c)
2 ≥ 2 Tφ (since φ(c) ≥ 2)

≥ α(φ(c), ψ(c))(||Tφ− Tψ||E + ϕ(Tφ) + ϕ(Tψ)). (by (3.4))
Therefore the inequality (3.2) is holds.
Let {φn} be a sequence in E0 such that α(φn(c), φn+1(c)) ≥ 1 and µ(φn(c), φn+1(c)) ≤ 1 for any n ∈ N∪{0}.
Then from the definition of α and µ, we have φn(c) ≥ φn+1(c) for any n ∈ N ∪ {0} and hence convergent.
Since R is complete, there exists r ∈ R such that φn(c)→ r as n→∞.
We define γ : I → E by γ(x) = r, x ∈ I. Then γ ∈ Rc and γ(c) = r.
Therefore φn(c)→ γ(c) as n→∞. Clearly φn(c) ≥ γ(c) for any n ∈ N ∪ {0}.
From the definition of α and µ, we get α(φn(c), γ(c)) ≥ 1 and µ(φn(c), γ(c)) ≤ 1 for any n ∈ N ∪ {0}.
Therefore the condition (iv) is satisfied.
For any n ∈ R, we define φn : I → E by

φn(x) =

{
nx2 if x ∈ [12 , 1]
n
x2

if x ∈ [1, 2].

Clearly φn ∈ E0, ||φn||E0 = ||φn(c)||E and hence φn ∈ Rc for any n ∈ R.
Let F0 = {φn | n ∈ R}. Then F0 ⊆ Rc and F0 is algebraically closed with respect to the difference.
Clearly φ 1

4
(c) ≥ Tφ 1

4
and hence α(φ 1

4
(c), Tφ 1

4
) ≥ 1 and µ(φ 1

4
(c), Tφ 1

4
) ≤ 1.

Therefore the condition (v) is satisfied.
Therefore T satisfies all the hypotheses of Corollary 3.10 which in turn T satisfies all the hypotheses of

Theorem 2.3 with ζ(t, s) = λs−t, G(s, t) = s−t, η(t) = t for any s, t ∈ R+, CG = 0 and λ = 1√
2
∈ (0, 1). Here

we observe that φ0, φ−2 ∈ Rc are two PPF dependent fixed points of T such that ϕ(φ0(c)) = 0 = ϕ(φ−2(c)).
Further we note that T is not one-one. For, we define γ1, γ2 : I → E by γ1(x) = 3x and γ2(x) = 4x for

any x ∈ I. Clearly γ1, γ2 ∈ E0 and γ1(c) = 3 ≥ 2, γ2(c) = 4 ≥ 2. By definition of T , we get Tγ1 = 1
2 = Tγ2,

but γ1 6= γ2.
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