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Abstract

This paper deals with the study of coupled fixed point theorems for φ-pseudo-contractive set-valued
mappings without using the mixed g-monotone property on the closed ball of partial metric spaces. Gener-
alizations of some well-known results concerning existence and location of coupled fixed points are obtained.
These coupled fixed point theorems are applied for obtaining the existence results for an elliptic system.
c⃝2017 All rights reserved.

Keywords: Coupled fixed point, set-valued mapping, partial metric space, elliptic systems.
2010 MSC: 47H04, 47H10, 35J57.

1. Introduction and preliminaries

In the study of nonlinear differential equations or differential inclusions, the topological methods are
used to give us the qualitative information about the existence, localization, stability, and multiplicity of
solutions. The topological degree and fixed point theorems are the most topological techniques used, which
are closely connected. In the present paper, we are interested in coupled fixed point theorems for set-valued
mappings on complete partial metric spaces which have an importance in the last decades.

Recall that the partial metric is an interesting distance function introduced by Matthews [28]. The
motivation behind introducing the concept of a partial metric space is to present a version of a Banach
contraction principle to solve some problems in computer science.

Recently, Benterki presented a fixed point theorem [8, Theorem 3.2] for φ-pseudo-contractive set-valued
mappings in the framework of partial metric spaces about a location of a fixed point with respect to an initial
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value of the set-valued mapping by using Bianchini-Grandolfi gauge functions. Note that a nondecreasing
function φ : J → J is called a Bianchini-Grandolfi gauge function or (c)-comparison on J (being a connected
interval on R+ containing 0) if

s(t) :=
∞∑
n=0

φn(t) is convergent for all t ∈ J,

where φn denotes the n-th iteration of the function φ and φ0(t) = t, i.e.,

φ0(t) = t, φ1(t) = φ(t), φ2(t) = φ(φ(t)), . . . , φn(t) = φ(φn−1(t)).

Then the theorem reads as follows:

Theorem 1.1 ([8]). Let (X, p) be a complete partial metric space, and consider a point x ∈ X, nonnegative
scalar r > 0 and a set-valued mapping ϕ from the closed p-ball Bp(x, r) to the closed subsets of (X, p). Let
φ : R+ → R+ be an increasing and continuous function such that φ is a Bianchini-Grandolfi gauge function
on interval J and lim

t↓0
φ(t) = 0. If there exists α ∈ J such that the following two conditions hold:

(a) p(x, ϕ(x)) < α, where s(α) ⩽ p(x, x) + r;

(b) δp(ϕ(x) ∩Bp(x, r), ϕ(y)) ⩽ φ (p(x, y)) , ∀x, y ∈ Bp(x, r),

then ϕ has a fixed point x∗ in Bp(x, r). If ϕ is a single-valued mapping and p(x, x) + 2r ∈ J , then x∗ is the
unique fixed point of ϕ in Bp(x, r).

This theorem generalizes and extends several known results in the literature (see e.g., [2, 4–6, 13, 14,
18, 22, 25–28, 30, 33]). In the last ten years, several authors studied a coupled fixed point results for single-
valued and set-valued mappings on various spaces with or without mixed g-monotone (mixed monotone)
property (see e.g., [3, 7, 9, 15, 17, 19–21, 23, 24, 31, 32, 37–39]). Note that the mixed g-monotone property
is given by the following:

Definition 1.2. Let (X,⪯) be a partially ordered set and F : X ×X → 2X be a set-valued mapping. We
say that F has a mixed g-monotone property if for any x1, x2, y1, y2 ∈ X we have

g(x1) ⪯ g(x2) ⇒ ∀u1 ∈ F (x1, y1), ∃u2 ∈ F (x2, y1), u1 ⪯ u2

and
g(y1) ⪯ g(y2) ⇒ ∀v1 ∈ F (x1, y1), ∃v2 ∈ F (x1, y2), v1 ⪰ v2.

The notion of a coupled fixed point was first initiated by Guo and Lakshmikantham in [16] and then
studied by Bhaskar and Lakshmikantham in [15]. They study coupled fixed points for a mappings having
the mixed monotone property (i.e., for g = Id the identity function) in a metric space endowed with partial
order under contractive conditions and proved the following theorem.

Theorem 1.3 ([15]). Let (X, d,⪯) be a partially ordered complete metric space and let F : X×X → X be
a continuous mapping having the mixed monotone property. Assume that there exists a λ ∈ [0, 1) such that

d(F (x, y), F (u, v)) ⩽ λ

2
(d(x, u) + d(y, v)) , ∀x, y, u, v ∈ X

with x ⪯ u and y ⪰ v. If there exist x0, y0 ∈ X such that x0 ⪯ F (x0, y0) and y0 ⪰ F (y0, x0), then there exist
x∗, y∗ ∈ X such that x∗ = F (x∗, y∗) and y∗ = F (y∗, x∗), i.e., F has a coupled fixed point.

The aim of this paper is to present the local version of coupled fixed point results for φ-pseudo-contractive
set-valued mappings on complete partial metric spaces without using the mixed g-monotone property. It
yields that several results are obtained as special cases. As an application, we establish the existence of
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solutions (not necessary positives) for the following nonlinear elliptic system
−u′′(t) = f(t, u(t), v(t))− λ. t ∈ (0, 1),
−v′′(t) = f(t, v(t), u(t))− λ, t ∈ (0, 1),
u(0) = u(1) = 0 = v(0) = v(1),

(1.1)

where f be a continuous real function and λ is a nonnegative real constant.
The paper is organized as follows. In this Section we recall some preliminary facts that we need in the

sequel, in Section 2 we prove our results and give some related corollaries, and in Section 3, we establish the
existence of solutions for nonlinear elliptic system (1.1).

First, we recall some basic concepts about partial metric space.

Definition 1.4. Let X be a nonempty set. A function p : X ×X → R+ is said to be a partial metric on X
and then the pair (X, p) is called a partial metric space if for any x, y, z ∈ X, the following conditions hold:

(P1) p(x, x) = p(y, y) = p(x, y) ⇔ x = y;

(P2) p(x, x) ⩽ p(x, y);

(P3) p(x, y) = p(y, x);

(P4) p(x, y) + p(z, z) ⩽ p(x, z) + p(z, y).

Thus, a metric space is precisely a partial metric space for which each self distance p(x, x) = 0.

Example 1.5. The following functions pi (i ∈ {1, 2}) define a partial metric for each X

p1(x, y) = max{x, y}, x, y ∈ X = R+,

p2(x, y) = |x− y|+ c, x, y ∈ X = R and c ⩾ 0.

Let (X, p) be a partial metric space. Then

• the closed p-ball of radius r centered at x is denoted by Bp(x, r), where

Bp(x, r) = {y ∈ X : p(x, y) ⩽ p(x, x) + r};

• a sequence {xn} converges to a point x ∈ X if and only if p(x, x) = lim
n→+∞

p(x, xn);

• a sequence {xn} is called a Cauchy sequence if lim
n,m→+∞

p(xn, xm) exists (and is finite);

• the partial metric space (X, p) is said to be complete if every Cauchy sequence {xn} in X converges,
with respect to τp, to a point x ∈ X such that p(x, x) = lim

n,m→+∞
p(xn, xm).

If p is a partial metric on X, then the function ps : X ×X → R+ given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y)

is a metric on X.

Lemma 1.6. Let (X, p) be a partial metric space.

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric space (X, ps).

(b) A partial metric space (X, p) is complete if and only if the metric space (X, ps) is complete.

Let (X, p) be a partial metric space and let Cp(X) be the family of all nonempty and closed subsets of
the partial metric space (X, p), induced by the partial metric p. For x ∈ X and A,B ∈ Cp(X), we define

p(x,A) = inf{p(x, a), a ∈ A},

and
δp(A,B) = sup{p(a,B), a ∈ A},

with the convention
p(x, ∅) = +∞, δp(∅, B) = 0. (1.2)
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Definition 1.7. Let (X, p) be a partial metric space, B ⊆ X be a subset and ϕ : B×B → Cp be a set-valued
mapping. An element (x∗, y∗) ∈ B ×B is called a coupled fixed point of ϕ if{

x∗ ∈ ϕ(x∗, y∗) ∩B,
y∗ ∈ ϕ(y∗, x∗) ∩B.

A point (x∗, x∗) ∈ B ×B is called a fixed point of ϕ if x∗ ∈ ϕ(x∗, x∗).

Note that if (x∗, y∗) is a coupled fixed point of ϕ, then (y∗, x∗) is coupled fixed point too.

2. The main results

In this section, we state and prove our main result.

Theorem 2.1. Let (X, p) be a complete partial metric space, x ∈ X, and r > 0 be a nonnegative scalar.
We consider a set-valued mapping ϕ : Bp(x, r)×Bp(x, r) → Cp(X). Let φ : R+ → R+ be a increasing and
continuous function such that φ is a Bianchini-Grandolfi gauge function on interval J and lim

t↓0
φ(t) = 0. If

there exists α ∈ J such that the following conditions hold:

(a) p(x, ϕ(x, x)) < α, where s(α) ⩽ p(x, x) + r;

(b) δp(ϕ(x, y) ∩Bp(x, r), ϕ(u, v)) ⩽ φ(max{p(x, u), p(y, v)}), ∀x, y, u, v ∈ Bp(x, r),

then ϕ has a coupled fixed point (x∗, y∗) in Bp(x, r)×Bp(x, r). If ϕ is a single-valued mapping and p(x, x)+
2r ∈ J , then (x∗, y∗) is the unique coupled fixed point of ϕ in Bp(x, r)×Bp(x, r).

Proof. If x ∈ ϕ(x, x) or φ ≡ 0 the proof is finished. So we assume that x /∈ ϕ(x, x) and φ ̸≡ 0. We consider
the Cartesian product X ×X endowed with the partial metric

p̃((x, y), (u, v)) = max{p(x, u), p(y, v)}

and then (X ×X, p̃) is a complete partial metric. We consider a set-valued mapping

ϕ̃ : Bp̃((x, x), r) → C p̃ := Cp × Cp

defined by

ϕ̃(x, y) = (ϕ(x, y), ϕ(y, x)) .

Now, we check that ϕ̃ satisfies all assumptions of Theorem 1.1 on the closed p̃-ball Bp̃((x, x), r). Before
starting, we need to prove the following two claims.

Claim 2.2. Bp(x, r)×Bp(x, r) = Bp̃((x, x), r).

Proof. Since Bp(x, r) × Bp(x, r) ⊂ Bp̃((x, x), r), by contradiction, we assume that there exists (a, b) ∈
Bp̃((x, x), r) \Bp(x, r)×Bp(x, r), i.e.,

p̃((a, b), (x, x)) ⩽ p̃((x, x), (x, x)) + r and max{p(a, x), p(b, x)} > p(x, x) + r.

Then we have

p̃((x, x), (x, x)) + r = p(x, x) + r < max{p(a, x), p(b, x)} = p̃((a, b), (x, x)) ⩽ p̃((x, x), (x, x)) + r,

which is a contradiction and hence equality holds.

Claim 2.3. p̃((a, b), ϕ̃(u, v)) ⩽ max{p(a, ϕ(u, v)), p(b, ϕ(v, u))}.
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p̃((a, b), ϕ̃(u, v)) = inf
(c,d)∈ϕ̃(u,v)

p̃((a, b), (c, d))

= inf
(c,d)∈(ϕ(u,v),ϕ(v,u))

max{p(a, c), p(b, d)}

⩽ max{ inf
c∈ϕ(u,v)

p(a, c), inf
d∈ϕ(v,u)

p(b, d)}

= max{p(a, ϕ(u, v)), p(b, ϕ(v, u))}.

First, observe that

p̃((x, x), ϕ̃(x, x)) ⩽ max{p(x, ϕ(x, x)), p(x, ϕ(x, x))} < α

and s(α) ⩽ p(x, x) + r = p̃((x, x), (x, x)) + r. That is, condition (a) of Theorem 1.1 holds.
Further, for any x, y, u, v ∈ Bp(x, r) we obtain

δp̃(ϕ̃(x, y) ∩Bp̃((x, x), r), ϕ̃(u, v)) = sup{p̃((a, b), ϕ̃(u, v)) : (a, b) ∈ ϕ̃(x, y) ∩Bp̃((x, x), r)}

⩽ sup{max{p(a, ϕ(u, v)), p(b, ϕ(v, u))} : (a, b) ∈ ϕ̃(x, y) ∩Bp̃((x, x), r)}

⩽
{

δp(ϕ(x, y) ∩Bp((x, r), ϕ(u, v)), if p(a, ϕ(u, v)) ⩾ p(b, ϕ(v, u)),

δp(ϕ(y, x) ∩Bp((x, r), ϕ(v, u)), else

⩽ φ(max{p(x, u), p(y, v)}) = φ(p̃((x, y), (u, v))),

that is, condition (b) of Theorem 1.1 is fulfilled. Hence, all conditions are satisfied and then there exists a
fixed point (x∗, y∗) ∈ ϕ̃(x∗, y∗) ∩Bp̃((x, x), r), i.e.,{

x∗ ∈ ϕ(x∗, y∗) ∩Bp(x, r),

y∗ ∈ ϕ(y∗, x∗) ∩Bp(x, r).

If ϕ is a single-valued mapping, then ϕ̃ is also a single-valued mapping and since p(x, x) + 2r ∈ J , i.e.,
p̃((x, x), (x, x)) + 2r ∈ J , then (x∗, y∗) is the unique fixed point of ϕ̃ and we have{

x∗ = ϕ(x∗, y∗) ∩Bp(x, r),

y∗ = ϕ(y∗, x∗) ∩Bp(x, r),

and the proof is completed.

Remark 2.4.

1. If p is a partial metric on X, then

p̃1((x, y), (u, v)) = max{p(x, u), p(y, v)} and p̃2((x, y), (u, v)) = p(x, u) + p(y, v)

are two equivalent partial metrics on X ×X such that p̃1 ⩽ p̃2 ⩽ 2p̃1.

2. If φ(a+ b) = φ(a)+φ(b) for each a, b ∈ R+, then the condition (b) from Theorem 2.1 is equivalent to:

(b′) δp(ϕ(x, y) ∩ Bp(x, r), ϕ(u, v)) + δp(ϕ(y
′, x′) ∩ Bp(x, r), ϕ(v

′, u′)) ⩽ φ(max{p(x, u), p(y, v)}+
max{p(x′, u′), p(y′, v′)}).

Then from Theorem 2.1 and Remark 2.4, we can obtain some corollaries.

Corollary 2.5. Let (X, p) be a complete partial metric space, x ∈ X, and r > 0 be a nonnegative scalar.
We consider a set-valued mapping ϕ : Bp(x, r)×Bp(x, r) → Cp(X). Let φ : R+ → R+ be a increasing and
continuous function such that φ is a Bianchini-Grandolfi gauge function on interval J and lim

t↓0
φ(t) = 0. If

there exists α ∈ J such that the following conditions hold:
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(a) p(x, ϕ(x, x)) < α, where s(α) ⩽ p(x, x) + r;

(b) δp(ϕ(x, y) ∩Bp(x, r), ϕ(u, v)) ⩽ φ(12(p(x, u) + p(y, v))), ∀x, y, u, v ∈ Bp(x, r),

then ϕ has a coupled fixed point (x∗, y∗) in Bp(x, r)×Bp(x, r). If ϕ is a single-valued mapping and p(x, x)+
2r ∈ J , then (x∗, y∗) is the unique coupled fixed point of ϕ in Bp(x, r)×Bp(x, r).

Proof. We use the inequality
1

2
p̃2 ⩽ p̃1, Remark 2.4, and the increasingness of φ to complete the proof.

Corollary 2.6 (Bhaskar and Lakshmikantham version). Let (X, p) be a complete partial metric space, and
consider a point x ∈ X, and nonnegative scalars r > 0 and 0 ⩽ λ < 1. We consider a set-valued mapping
ϕ : Bp(x, r)×Bp(x, r) → Cp(X). Let the following two conditions hold:

(a) p(x, ϕ(x, x)) < (p(x, x) + r)(1− λ);

(b) δp(ϕ(x, y) ∩Bp(x, r), ϕ(u, v)) ⩽
λ

2
(p(x, u) + p(y, v)), ∀x, y, u, v ∈ Bp(x, r).

Then ϕ has a coupled fixed point (x∗, y∗) in Bp(x, r)×Bp(x, r). If ϕ is a single-valued mapping, then (x∗, y∗)
is the unique coupled fixed point of ϕ in Bp(x, r)×Bp(x, r).

Proof. We apply Corollary 2.5 for φ(t) = λt which is a Bianchini-Grandolfi gauge function on J = [0,+∞)

and s(t) =
t

1− λ
. Taking α = (p(x, x) + r)(1− λ) ∈ J , we complete the proof.

Notice that the condition (b) from Corollary 2.6 can be re-written, by using Remark 2.4, as follows:

(b′′) δp(ϕ(x, y) ∩Bp(x, r), ϕ(u, v)) + δp(ϕ(y, x) ∩Bp(x, r), ϕ(v, u)) ⩽ λ(p(x, u) + p(y, v)),

and then we get the local version of [3, Theorem 2.1] for set-valued mappings on partial metric spaces as
follows.

Corollary 2.7. Let (X, p) be a complete partial metric space, and consider a point x ∈ X, and nonnegative
scalars r > 0 and k, l ⩾ 0 such that 0 ⩽ k + l < 1. We consider a set-valued mapping ϕ : Bp(x, r) ×
Bp(x, r) → Cp(X). Let the following two conditions hold:

(a) p(x, ϕ(x, x)) < (p(x, x) + r)(1− (k + l));

(b) δp(ϕ(x, y) ∩Bp(x, r), ϕ(u, v)) ⩽ lp(x, u) + kp(y, v), ∀x, y, u, v ∈ Bp(x, r).

Then ϕ has a coupled fixed point (x∗, y∗) in Bp(x, r)×Bp(x, r). If ϕ is a single-valued mapping, then (x∗, y∗)
is the unique coupled fixed point of ϕ in Bp(x, r)×Bp(x, r).

Proof. For λ = l + k < 1, we are using Remark 2.4 for any x, y, u, v ∈ Bp(x, r), and we get

δp(ϕ(x, y) ∩Bp(x, r), ϕ(u, v)) + δp(ϕ(y, x) ∩Bp(x, r), ϕ(v, u)) ⩽ (l + k)(p(x, u) + p(y, v))

⩽ λ(p(x, u) + p(y, v)).

We complete the proof by applying Corollary 2.6.

3. Application

In this section, we consider X = C([0, 1]) the space of continuous real functions defined on I = [0, 1] and
d : X ×X → R+ a metric defined by

d(u, v) = ∥u− v∥ = sup
t∈I

|u(t)− v(t)|.

We set the partial metric

p(u, v) = d(u, v) + c = sup
t∈I

|u(t)− v(t)|+ c, c ⩾ 0,
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and since ps(x, y) = 2p(x, y) − p(x, x) − p(y, y) = 2∥x − y∥, so by Lemma 1.6, (X, p) is complete since the
metric space (X, ∥ · ∥) is complete. We apply our main results to study the existence of solutions for the
following elliptic system with Dirichlet boundary conditions

−u′′(t) = f(t, u(t), v(t))− λ, t ∈ (0, 1),
−v′′(t) = f(t, v(t), u(t))− λ, t ∈ (0, 1),
u(0) = u(1) = 0 = v(0) = v(1),

(3.1)

where f : (0, 1) ×X ×X → R is a continuous function and λ ⩾ 0. The existence of solutions for Dirichlet
boundary value problems has been studied extensively. For examples, see [1, 10, 34–36] for a single variable
and [11, 12, 29] for system of two variables.

Now, we consider the following conditions.

1. There exist a constant C ⩾ 0 and K(λ) a positive continuous function defined for λ ⩾ C.

2. There exists an increasing and continuous function φ : R+ → R+ such that φ is a Bianchini-Grandolfi
gauge function on interval J and lim

t↓0
φ(t) = 0.

3. There exists α ∈ J such that s(α) ⩽ c+K(λ).

4. ∥f(·, 0, 0)− λ∥ < 8(α− c).

5. |f(t, a, b) − f(t, a′, b′)| ⩽
{

8φ(max{|a− a′|, |b− b′|}+ c)− 8c, (a, b) ̸= (a′, b′),
0, (a, b) = (a′, b′)

for all t ∈ I, and

|a|, |a′|, |b|, |b′| ⩽ K(λ).

Theorem 3.1. For a fixed c ⩾ 0, suppose that conditions (1)-(5) hold. Then (3.1) has at least one solution
(u∗, v∗) in (C2((0, 1)) ∩ C([0, 1]))2 such that max{∥u∗∥, ∥v∗∥} ⩽ K(λ). Moreover, if c + 2K(λ) ∈ J , then
the solution (u∗, v∗) is unique.

Proof. It is well known that (u∗, v∗) ∈ (C2((0, 1)) ∩ C([0, 1]))2 is a solution of system (3.1) if and only if
(u∗, v∗) ∈ C([0, 1])× C([0, 1]) is a solution of the following nonlinear integral system

u(t) =
1∫
0

G(t, s)[f(s, u(s), v(s))− λ]ds, t ∈ I,

v(t) =
1∫
0

G(t, s)[f(s, v(s), u(s))− λ]ds, t ∈ I,

(3.2)

where G(t, s) is the Green function of the second-order Sturm-Liouville boundary value problem{
−z′′(t) = 0, t ∈ (0, 1),
z(0) = 0, z(1) = 0.

(3.3)

It is known that

G(t, s) =

{
t(1− s), 0 ⩽ t ⩽ s ⩽ 1,
s(1− t), 0 ⩽ s ⩽ t ⩽ 1,

(3.4)

and then for all t ∈ I, we have
1∫

0

G(t, s)ds =
1

2
t(1− t),

which implies that sup
t∈I

1∫
0

G(t, s)ds =
1

8
. Let us define a sample set-valued mapping A : X ×X → X by

A(u, v)(t) =

1∫
0

G(t, s)[f(s, u(s), v(s))− λ]ds for all u, v ∈ X.
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Thus the existence of solutions to system (3.2) is equivalent to find the coupled fixed point to nonlinear
operator A.

Now, we check that A satisfies all assumptions of Theorem 2.1 on the closed p-ball of radius K(λ)
centered at 0X , the null function of X is denoted by Bp(0X ,K(λ)).

First, the use of assumptions (1)-(4) give the following

p(0X , A(0X , 0X)) = sup
t∈I

|0X(t)−A(0X , 0X)(t)|+ c

⩽ sup
t∈I

∣∣∣∣∣∣
1∫

0

G(t, s)[f(s, 0X(s), 0X(s))− λ]ds

∣∣∣∣∣∣+ c

⩽ sup
t∈I

1∫
0

G(t, s) |f(s, 0X(s), 0X(s))− λ| ds+ c

⩽ 1

8
∥f(·, 0, 0)− λ∥+ c <

8(α− c) + 8c

8
= α

and s(α) ⩽ c+K(λ) = p(0X , 0X) +K(λ). Thus the condition (a) of Theorem 2.1 is satisfied.
Let x, y, u, v ∈ Bp(0X ,K(λ)), then we have two cases. The first one is if A(x, y) /∈ Bp(0X ,K(λ)), then

according to convention (1.2) we have

δp(A(x, y) ∩Bp(0X ,K(λ)), A(u, v)) = 0 ⩽ φ(max{p(x, u), p(y, v)}).

So we assume that A(x, y) ∈ Bp(0X ,K(λ). From condition (5), we have

δp(A(x, y) ∩Bp(0X ,K(λ)), A(u, v)) = p(A(x, y), A(u, v))

= sup
t∈I

|A(x, y)(t)−A(u, v)(t)|+ c

= sup
t∈I

∣∣∣∣∣∣
1∫

0

G(t, s)(f(s, x(s), y(s))− f(s, u(s), v(s)))ds

∣∣∣∣∣∣+ c

⩽ sup
t∈I

1∫
0

G(t, s) |f(s, x(s), y(s))− f(s, u(s), v(s))| ds+ c

⩽ sup
t∈I

1∫
0

G(t, s)(8φ(max{|x(s)− u(s)|, |y(s)− v(s)|}+ c)− 8c)ds+ c

⩽

sup
t∈I

1∫
0

G(t, s)ds

 (8φ(max{∥x− u∥, ∥y − v∥}+ c)− 8c) + c

⩽ 1

8
(8φ(max{∥x− u∥, ∥y − v∥}+ c)− 8c) + c

⩽ φ(max{p(x, u), p(y, v)}).

Thus all conditions are satisfied and then A has a coupled fixed point (u∗, v∗) in Bp(0X ,K(λ))×Bp(0X ,K(λ)),
i.e., max{p(u∗, 0X), p(v∗, 0X)} ⩽ p(0X , 0X) +K(λ) ⇔ max{∥u∗∥, ∥v∗∥} ⩽ K(λ). Since A is a single-valued
and if c+ 2K(λ) ∈ J , i.e., p(0X , 0X) + 2K(λ) ∈ J , then (u∗, v∗) is unique.

Acknowledgements

The authors would like to acknowledge the valuable comments and suggestions of the reviewers, which
have improved the quality of this paper.



A. Benterki, M. Rouaki, A. H. Ansari, Commun. Nonlinear Anal. 4 (2017), 111–120 119

References

[1] I. Addou, A. Benmezäı, Boundary-value problems for the one-dimensional p-laplacian with even superlinearity,
Electron. J. Differential Equations, 1999 (1999), 29 pages. 3

[2] I. Altun, F. Sola, H. Simsek, Generalized contractions on partial metric spaces, Topology Appl., 157 (2010),
2778–2785. 1

[3] H. Aydi, Some coupled fixed point results on partial metric spaces, Int. J. Math. Math. Sci., 2011 (2011), 11
pages. 1, 2

[4] H. Aydi, M. Abbas, C. Vetro, Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces,
Topology Appl., 159 (2012), 3234–3242. 1

[5] H. Aydi, S. Hadj Amor, E. Karapınar, Berinde-type generalized contractions on partial metric spaces, Abstr.
Appl. Anal., 2013 (2013), 10 pages.

[6] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund.
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