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Abstract

In this paper we study the existence of solutions of nonlinear fractional hybrid differential equations. By
using the topological degree theory, some results on the existence of solutions are obtained. The results are
demonstrated by a proper example. (©2017 All rights reserved.
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1. Introduction

The interest in the study of differential equations of fractional order lies in the fact that fractional deriva-
tives provide an excellent tool for the description of memory and hereditary properties of various materials
and processes. Fractional differential equation can describe many phenomena in various fields of science
and engineering such as control, porous media, electrochemistry, viscoelasticity, electromagnetic, physics,
chemistry, biology, economics, control theory, signal and image processing, biophysics, etc. There are large
number of papers dealing with the solvability of nonlinear fractional differential equations. The papers
[4, 5, 31, 32] considered boundary value problems for fractional differential equations. For more recent
development on this hot topic, one can see the monographs of Baleanu et al. [6] , Diethelm [10], Kilbas et
al. [14], Lakshmikantham et al. [15], Miller and Ross [17], Michalski [18], Podlubny [19] and Tarasov [24].
Fractional differential equations involving the Riemann-Liouville fractional derivative or the Caputo frac-
tional derivative have been paid more attention. Existence of solutions to boundary value problems for
coupled systems of fractional order differential equations involving Riemann-Liouville or Caputo deriva-
tive have attracted more attentions, we refer to [2, 8, 22, 23, 29, 33]. In these papers, classical fixed
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point theorems such as Banach contraction principle and Schauder fixed point theorem have been used
to develop conditions for existence of solutions. Many results can be found in literature dealing with ex-
istence and uniqueness of solutions via different techniques of functional analysis; we refer the reader to
[1, 3,7, 11, 13, 16, 20, 26, 27, 30].

Degree theory for the solution of fractional order differential equations was first applied by Isaia [12]. In the
said paper, the priori estimate method is used together with the degree for condensing maps to establish
conditions for the existence of solution to the integral equations as given by

b
u(t) = o(t, u(t) +/ Ot s, u(s))ds, € [a,b].

Wang et al [25], studied the existence and uniqueness of solutions via topological degree method to a class
of nonlocal Cauchy problems of the form

{un(t) = f(t,u(t)), t €[0,T],
u(0) + g(u) = uo,

where D is the Caputo fractional derivative of order g € (0,1], up € R, and f : I x R — R is continuous.
Wang et al [28], obtained sufficient conditions for the existence and uniqueness of positive solutions to the
following coupled system of nonlinear three-point boundary values problem

{Dpu(t) = f(t,u(t)), Du(t) = g(t,v(t)), 0 <t < 1,
u(0) =0, v(0) =0, u(l) = au(n), v(l) = buv(n).

Topological theory was also applied by Shah et al. [21], to obtain sufficient conditions for the existence and
uniqueness of solutions to more general coupled systems of nonlinear multi-point boundary value problems.

Dx(t) = ¢(t, (1), y(t)),

DPy(t) = ¢(t, (1), y(t)),t € [0,1],
z(0) =0, y(0) =0,

z(1) = dx(n), y(1) =vy(n),

where 1 < a < 2 is a real number, D is the Caputo fractional differential operator of order a.

Motivated by the above results, we use topological degree theory approach and fixed point theorem to study
sufficient conditions for existence and uniqueness of solutions to some non linear boundary value problem
with boundary conditions of the form

D2 (a(t) = f(t.2(t))) = g(t,y(t), I (2),
DA (y(t) — F(t. (1) = gt 2(2). 1% (1), "
2(0) = 0. a(1) = h(a(n)).
2(0) = 0. y(1) = h{y(n).

where D¢ denotes the Riemann-Liouville fractional differential operator of order , a, 1 < a < 2, where
f:[0,1]] x R—Rand g:[0,1] x [0,1] x R — R are continuous functions.

The rest of this paper is organized as follows. In Section 2, we give some notations, recall some concepts
and important results needed in this paper. In Section 3, we introduce a concept of existence of at least
solutions for the problem (4.1) by using a new fixed point theorem which is linking degree theory for
condensing maps.
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2. Preliminaries

Here, in this section we give some fundamental definitions and results from fractional calculus and
topological degree theory. For detail see [9, 12, 14].

Definition 2.1. The fractional integral of order o > 0 of a function u : (0,00) — R is given by

Tou(t) = F(loz) /0 (t — 5)° Lu(s)ds,

provided that the right-hand side is pointwise defined on (0, c0).

Definition 2.2. The fractional derivative of order o > 0, of a continuous function u : (0,00) — R is given

by
20 = iy () ) = o

where n = [a] + 1, n = [a] denotes the integer part of «, provided that the right-hand side is pointwise
defined on (0, 00).

Let X be a Banach spaces throughout this paper and B € P(X) be the family of all its bounded sets.
Then, we recall the following results.

Definition 2.3. The Kuratowski measure of noncompactness o : B — R* is defined as
a(B) = inf{d > 0, where B € B admits a finite cover by sets of diameter at most d}.

Proposition 2.4. The Kuratowski measure « satisfies the following properties:
(1) a(B) =0 if and only if B is relatively compact;

)
(i4) o is a seminorm, that is, «(AB) = |A| a(B), A € R and a(By + Bs) < a(B1) + a(Bo);
(i41) By C By implies a(B1) < a(By); a(By U Bs) = max{a(B1), a(Bs)}.
(iv) a(convB) = a(B);
(v) a(B) = a(B).

Definition 2.5. Consider 2 C X and F : Q — X a continuous bounded map. We say that F is a-Lipschitz
if there exists k > 0 such that a(F(B)) < «(B) for all B C 2 bounded. If, in addition, k¥ < 1, then we say
that F is a strict a-contraction.

We say that F is a-condensing if o(F(B)) < a(B) for all B C Q bounded with a(B) > 0. In other words,
a(F(B)) = a(B) implies a(B) = 0. The class of all strict a-contractions F : 2 — X is denoted by IC,(2)
and the class of all a-condensing maps F : Q@ — X is denoted by C,(2).

We remark that SC,(Q2) C Co(2) and every F € Cy(2) is a-Lipschitz with constant £ = 1. We also recall
that F : Q — X is Lipschitz if there exists k > 0 such that | Fx — Fy|| < k|jz — y|| for all z,y € Q and that
F is a strict contraction if k¥ < 1. Next, we collect some properties of the applications defined above.

Proposition 2.6. If 7,G : ) — X are a-Lipschitz maps with constants k,respectively k' then F+G : Q —
X are a-Lipschitz with constants k + & .

Proposition 2.7. If F: ) — X is compact, then F is a-Lipschitz with constant k = 0.

Proposition 2.8. If F: () — X is Lipschitz with constant k, then F is a-Lipschitz with the same constant
k.
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The theorem below asserts the existence and the basic properties of the topological degree for a-
condensing perturbations of the identity.

Theorem 2.9. Let
{ (I —F,Qy): QC X open and bounded,

FeC,(Q), ye X (I — F)(09),

be the family of the admissible triplets. There exists one degree function D : © — Z which satisfies the
properties:

(D1) D(I,Q,y) =1 for every y € Q (Normalization);
(D9) For every disjoint, open sets Q1,09 C Q and every y ¢ (I — F)(Q\ (21U Q22))
D(I_‘FaQay) - D(I_f7Ql7y)+D(I_f’Q2ay)a
(D3) D(I-H(t,),Q,y(t)) is independent of t€[0,1] for every continuous, bounded map H : [0,1] x @ — X

which satisfies
a(H([0,1] x B)) < a(B) ¥ B C Q with a(B) >0

and every continuous function y : [0,1] — X which satisfies

y(t) #x — H(t,z) Vt€[0,1], for all x € 0Q;

(Dy) D(I —F,Q,y) # 0 implies y € (I —F)(£2).
Now we state a fixed point theorem which will be used in the proofs of the main results.

Theorem 2.10. Let F : X — X be a-condensing and S = {x € X : there exists A € [0,1] such that x =
AFx}. If S is a bounded set in X, so there exists r > 0 such that S C B,(0), then F has at least one fized
point and the set of the fived points of F lies in By(0).

Let X = C([0,1],R) the Banach space of all continuous functions from C[0,1] — R with the topological
norm ||z|| = max{|z| : t € [0,1]}. Then the product space X x X defined by X x X = {(z,y) : x,y € X}, is
a Banach space under the norm ||(z,y)|| =||z||+y|l-

3. Main Results
In this section, we discuss the existence and uniqueness of solutions to the BVP(4.1).

Theorem 3.1. The unique solutions of the BVP given by

{ “(a(t) — £t () = glt,y(0), Ty (1), t € J = [0,1],
(0) =0, a(1) = h(x(n), 0 <n <1,
18 .

o) = f(t2) + (aln) = £(1.0) = F(L A+ [ Gl 9)a(sy(s). T0(9)ds t € 0.1
where G(t, s) is defined by

1 [t=s)t=t(1—-5)>" 0<s<t<I,
Glt:s) = =3 . o
(1 — )L, 0<t<s<l,
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In view of Theorem 3.1, solution of the coupled system of BVP (4.1) is provided in the form of coupled
systems of Fredwholm integral equations as:

1
w(t) = f(t,2) + (h(z(m) = £(1,0) = F(1,h(z(n)) )t + /O G(t, 5)g(s, y(5), I°y(s))ds, t € [0, 1],
(3.1)

1
y(t) = F(t.y) + (Ay(n) = F(1,0) = F(L,h(y(n) )¢ + /0 G(t, 5)g(s, 2(s), T(s))ds, t € [0,1],

where f:[0,1] x R -+ R and ¢ : [0,1] x [0,1] x R — R are continuous functions which satisfy the following
conditions:

(@) |f(t,z) — f(t,y)| < Mx —y|, where pu=(A1+ K)+ K) <1
for every (t,x), (t,y) € [0,1] x

(i1) |f(t,2)|] < er|x(t)|? + my where ¢1,my > 0, ¢1 € [0, 1),
for every (t,x) € [0, 1] x R;

(iii) |g(t,s,x)| < co|x(t)]|?2 + ma where co,ma > 0, g2 € [0, 1),
for every (t,s,z) € [0,1] x [0,1] x R;

(iv) Let there exists K > 0, such that |h(z) — h(z| < K|z — Z|, for every z,z € R;
(v) |ha(t)| < es|x(t)]|? + my where e3,myp, > 0, g3 € [0,1).

Define operators ¢ : C[0,1] x C[0,1] — C|0,1] x C[0,1], by ¢(z,y)(t) = (Fx(t), Fy(t)), where Fx(t) =
f(t,z(t)) + (h(:r(n)) — f(1,0) — f(1,h(x(n )))t for t € [0 1] and ¢ : C[0,1] x C[0,1] — C0,1] x C]0, 1],
by (z,y)(t) = (Hz(t), Hy(t)), where Hx(t fo (s,z(s),I%(s))ds, for t € [0,1], T : C[0,1] x

C[0,1] = €[0,1] x C[0,1], by T(z,y)(t) = </>( y)(t )+w(w y)( )-
Thus the existence of a solution for system of equation (1) is equivalent to the existence of a fixed point for
operator T.

Theorem 3.2. The operator ¢ : C[0,1]xC[0,1] — CI0,1]xC0, 1] is Lipschitz with constant . Consequently
¢ is a-Lipschitz with the same constant p and also ¢ satisfies the following growth condition

6(z, y)| < er| (@, )| + esll(@, )| + Iz, 9)[* +m™.

Proof. Consider

|Fa) = Fa@)| = | £t,2() + (ham) - £01,0) = 11, <<n>>)t
= JwW) ~ (h@m) = 101,0) = F(1L,h@m) )
< | ) - £ 30)] + | n)){+)f(l,hu(n))—f(l,h(f(m)
< M-+ K| -7 ‘+>\)h — h(z(m)|
< )\H.T*f”#LKHI‘fIH+)\K”I‘f$||

= A+ K+ AIK)||z — |
= (AMl+K)+ K)|z—2z|
= ullz—all.
Similarly
|Fut) = F5)|| < ully =3I, for every y,5 € Clo, 1],
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This implies

|6@.n)®) = o@9)®)|| = |(Fat), Fy) - (Fa(e), Foe)|
= | Fat) - Faw), Fyit) - Fuee)

= | Fa() - Fo) - Fy(t)

< ullz 7|+ ully 7l
= u(lle = 2+l - 71
= n(ll@.y) - @Dl).

By proposition (2.4) ¢ is a-Lipschitz with constant p. Now for the growth condition using (i7), we get

0z, y)(0)] =|(Fz(t), Fy(t)| =|Fz(t)[+|Fy(t)]

f(t,2(8) + (h(z(m) = £(1,0) = F(Lh(z(m) )|, te 0.1

]tw@r+(h — F(L,0) = f(L h() )1
< |r. (!H(((MHﬂ1®+fﬂh((M
<172 () ()| + exlbe(m) | + 2m1

< crl|z]|™ 4+ my + e3)|z||® + c1(es]|z]|B)E 4 2my
= calall® + eallz® + exc ] + 3, using g1 < a3

= allz]|* + esllz|® + ¢l ]|® +m”

Similarly

(FD O] < eally|® + eslly|® + ¢y +m*

This implies

[o(z, y)| < all(, )" + esll(z, y)[|* + (2, y)l|® +m”

Proposition 3.3. The operator ¢ : C[0,1] x C[0,1] — C[0,1] x C[0,1] is compact. Consequently 1 is
a-Lipschitz with zero constant and under the hypothesis (h3) satisfies the growth condition

(e, y) (call @l +ma).

1
S —
I'= I'a+1)

Proof. Let (zn,yn) be a sequence in X x X, (z,y) € X x X such that (z,,y,) — (x,y).This implies that
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xn — x and y, — y. We need to prove that ||¢(zn, yn) — ¥(z,y)|| — 0, as n — oco. Consider

192, yn) = (@, y)|| =[[(Hzn, Hyn) — (Hz, Hy)|
=|[(Hzp — Hx, Hy, — Hy)||

|Ha — Ha| = )/Gts(sxn( ), 20 (s /Gts (5,2(5), Z(s))|
~ | /0 G(t,5) (905, 2n(5), T°@n(s)) = gls,2(s), T2 ()) ) ds|
< /1 G(t,5)]|g(s, 2 (5), T2a(s) = gls,2(s), T(s))|ds
/ mazp, 1]‘(; (1,9)|[0(s. 2 (). T2a(s)) — gls,2(s), T (s))|ds
/ L s, (), T () — g 2(5), T ().
Using the continuity of g, we have
|9(s,zn(s), L%n(s)) — g(s, x(s), L%x(s))| = 0,
implies that ||Ha, — He|| — 0. Similarly |[Hy, — Hy|| — 0. This implies

(%0, yn) — Y(z,y)[| = 0.

The continuity of ¢ is proved. Moreover, 1 satisfies the following growth condition

[ (z, y)|| =I[(Ha, Hy)|| =||Hz||+|Hy]

2] < g (colll™ + ma).
Similarly, one has
179 < g (eallll ™ +m2).
From, which we have
(el € o (el + ma). (3:2)

for every (x,y) € C[0,1] x C[0.1].
In order to prove compactness of ¢, we consider a bounded set B € X x X and a sequence (z,,yy) in B,
then using (3), we have

1
19 (n, ) | < m(@u(mmmu% +ms),

for every (z,y) € X x X, which implies that ¢ (B) is bounded.
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Now, for equi-continuity, choose 0 < t; < to < 1. Then we have

(2, y)(t) = (2, y) (k)] =|(Ha(thr), Hy(t1)) — (Ha(tz), Hy(t2))]
=|Hux(ty) — Hx(tz), Hy(t1) — Hy(ta)|

1 1
|Hx(t1) — Hx(t2)| :|/ G(tl,s)g(s,x(s),Zax(s))ds/0 G(ta,s)g(s,z(s), I%(s))ds|
| [ (6lt1.5) = G2, 9) oo, 060,75t
/ Glt1,5) — Glt2, )] |g(s. x(s), T°(s))|ds

/lG t1,s) — Glt2, s)|(cz ]| + ms)
bty —s)ot ta (4, _ g)a—1
e [ e [
M ' _ 51y
) )
q2 53 tS to — 1t
~ (el +7”2)(F<a1+ T F(2a+11))

= (colla® 4 ma) (1 = #5 = (02— 12)).

It follows |Hx(ty) — Hxz(t2)| — 0 and |Hy(t1) — Hy(t2)| — 0 as t; — to, which implies that ¢ (z,y) is equi-
continues. For every (z,y) € B, the set ¢(B) € X x Y satisfies the hypothesis of Arzela-Ascoli theorem,
Y (B) is relatively compact in X x Y . Hence v is a-Lipschitz with constant 0. O

Theorem 3.4. If the function f : [0,1] x R = R and g : [0,1] x [0,1] x R — R satisfy the condition (1),
(i), (iii), then the system of equations

1
o) = fta) + (Watn) = F1L.0) = F(L A )1+ [ Gts)gle)ds.t € .1

1
y(t) = J(ty) + (hly() = £(1,0) = F(1,h(y(n) )t + /0 G(t, $)g(s)ds,t € [0,1],

has at least one solution (z,y) € C[0,1] x C[0,1] and the set of the solutions of equation (1) is bounded in
C [0,1].

Proof. Let ¢,1, T be the operators defined in the beginning of this section. They are continuous and
bounded. Moreover, ¢ is a-Lipschitz with constant p [0,1) and 1 is « -Lipschitz with zero constant (see
Propositions (2.7) and (2.6)). Proposition (2.7) shows us that T is a strict a-contraction with constant .
Set

S ={(x,y) € C[0,1] x C[0,1] : for all A € [0,1] such that (z,y) = \T(x,y)}.

Next, we prove that S is bounded in C[0,1]. Consider (z,y) € S and A € [0, 1] such that (z,y) = AT (z,y).
@)l = TG )l < Ao I+, v)l)

< A (el w17 + eall I + Gyl +m + (call )1 + o) ).

1
I'a+1)

This inequality, together with ¢; < 1, g2 < 1 and ¢3 < 1 shows us that S is bounded in CJ[0,1].
Consequently, by Theorem 2.6 we deduce that T has at least one fixed point and the set of the fixed points
of T is bounded in C [0,1]. O

Remark 3.5. The results of Theorem 3.4 also valid for using ¢ = ¢o = g3 = 1.
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4. Example

Example 4.1.

| exp(—)sin(z(t))] _ sin(y(t)) + ' sin(y(1))
D [w(t) a 50 + ¢2 ] B 40 + exp(rt) cte o,
. exp(—t)sin(y(t))]  sin(z(t)) + I*° sin(xz(t))
D [(y(t) B 50 + t2 } N 40 + exp(mt)  te (0], (4.1)

2(0) = 0, 2(1) = %Osin($(0.5)),

y(0) =0, y(1) = 15 sin(y(0.5)).

From the given system (4.1), we have ¢; = %, cy = ﬁ, mi=me=0,g1 =q=qg3=1, K = %, c3 =

%, my, = 0, m* = 0. Further A = %. Then with the help of these values one can easily prove that the
conditions of Theorem 3.4 are satisfied. Hence the given system of boundary value problem has at least one
solution.

Acknowledgments

We are really thankful to the anonymous referee for his/her useful comments and corrections which
improved this paper.

References

[1] R. P. Agarwal, M. Belmekki and M. Benchohra, A survey on semilinear differential equations and inclusions
involving Riemann-Liouville fractional derivative, Adv. Difference Equ., 2009 (2009), 47 pages. 1
[2] B. Ahmad, J. J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with
three-point boundary conditions, Comput. Math. Appl., 58 (2009), 1838-1843. 1
[3] B. Ahmad, J. J. Nieto, Ezistence of solutions for anti-periodic boundary value problems involving fractional
differential equations via Leray-Schauder degree theory, Topol. Methods Nonlinear Anal., 35 (2010), 295-304. 1
[4] T. S. Aleroev, The Sturm-Liouville problem for a second order ordinary differential equation with fractional
derivatives in the lower terms, Differentsial’'nye Uravneniya, 18 (1982), 341-342. 1
[5] Z. B. Bai, H. S. Lii, Positive solutions for boundary value problem of non linear fractional differential equation,
J. Math. Anal. Appl., 311 (2005), 495-505. 1
[6] D. Baleanu, J. A. T. Machado and A. C. J. Luo, Fractional Dynamics and Control, Springer, NY, USA, (2012).
1
[7] M. Benchohra, J. R. Graef and S. Hamani, Existence results for boundary value problems with nonlinear fractional
differential equations, Appl. Anal., 87 (2008), 851-863. 1
[8] L. Cai, J. Wu, Analysis of an HIV/AIDS treatment model with a nonlinear incidence rate, Chaos Solitons Fractals,
41 (2009), 175-182. 1
[9] K. Deimling, Non linear Functional Analysis, Springer-Verlag, (1985). 2
[10] K. Diethelm, The Analysis of Fractional Differential Equations, in Lecture Notes in Mathematics, Springer-Verlag,
(2010). 1
[11] V. Gafiychuk, B. Datsko, V. Meleshko and D. Blackmore , Analysis of the solutions of coupled nonlinear fractional
reaction-diffusion equations, Chaos Solitons Fractals, 41 (2009), 1095-1104. 1
[12] F. Isaia, On a non linear integral equation with out compactness, Acta Math. Univ. Comenian., 75 (2006),
233-240. 1, 2
[13] R. A. Khan, K. Shah, Ezistence and uniqueness of solutions to fractional order multi-point boundary value
problems, Commun. Appl. Anal., 19 (2015), 515-526. 1
[14] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,
Elsevier Science B.V., Amsterdam, (2006). 1, 2
[15] V. Lakshmikantham, S. Leela and J. Vasundhara Devi, Theory of Fractional Dynamic Systems, Cambridge
Scientific Publishers, (2009). 1
[16] L. Lv, J. Wang and W. Wei, Ezistence and uniqueness results for fractional differential equations with boundary
value conditions, Opuscul. Math., 31 (2011), 629-643. 1



Samina, K. Shah, R. Ali Khan, Commun. Nonlinear Anal. 3 (2017), 34-43 43

[17]
[18]

[19]
[20]

21]
[22]
23]
[24]
[25]
[26]
27)
28]
[29]
30
31]
32

33]

K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley and
Sons, New York, USA, (1993). 1

M. W. Michalski, Derivatives of Non integer Order and their Applications: Master disertation Polish Acad. Sci.,
(1993). 1

1. Podlubny, Fractional Differential Equations, Academic Press, New York (1999). 1

M. Rehman, R. A. Khan, Ezistence and uniqueness of solutions for multipoint boundary value problems for
fractional differential equations, Appl. Math. Lett., 23 (2010), 1038-1044. 1

K. Shah, A. Ali and R. A. Khan, Degree theory and existence of positive solutions to coupled systems of multi-point
boundary value problems, Bound. Value Probl., 2016 (2016), 12 pages. 1

X. Su, Boundary value problem for a coupled system of non linear fractional differential equations, Appl. Math.
Lett., 22 (2009), 64-69. 1

K. Shah, R. A. Khan, Fxistence and uniqueness of positive solutions to a coupled system of nonlinear fractional
order differential equations with anti-periodic boundary conditions, Differ. Equ. Appl. 7 (2015), 245-262. 1

V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and
Media, Springer, (2011). 1

J. Wang, Y. Zhou and W. Wei, Study in fractional differential equations by means of topological degree methods,
Numer. Funct. Anal. Optim., 33 (2012), 216-238. 1

J. Wang, H. Xiang and Z. Liu , Positive solution to non zero boundary values problem for a coupled system of
nonlinear fractional differential equations, Int. J. Differ. Equ., 2010 (2010), 12 pages. 1

A. Yang, W. Ge , Positive solutions of multi-point boundary value problems of nonlinear fractional differential
equation at resonance, J. Korea Sco. Math.,16 (2009), 181-193. 1

W. Yang , Positive solution to non zero boundary values problem for a coupled system of monlinear fractional
differential equations, Comput. Math. Appl., 63 (2012), 288-297. 1

W. Yang, Positive solution to non zero boundary values problem for a coupled system of nonlinear fractional
differential equations, Comput. Math. Appl., 63 (2012), 288-297. 1

S. Zhang, Positive solutions to singular boundary value problem for nonlinear fractional differential equation,
Comput. Math. Appl., 59 (2010), 1300-1309. 1

S. Q. Zhang, Existence of solution for a boundary value problem of fractional order, Acta Math. Sci., 26B (2006),
220-228. 1

S. Q. Zhang, Positive solutions for boundary-value problems of non linear fractional differential equations, Elec-
tron. J. Differential Equations, 36 (2006), 1-12. 1

E. Zeidler, Nonlinear Functional Analysis an Its Applications, Springer, NewYork (1986). 1



	1 Introduction
	2 Preliminaries
	3 Main Results
	4 Example

