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Abstract

In this paper a nonlinear inverse heat conduction problem in one dimensional space is considered. This
inverse problem reformulate as an auxiliary inverse problem. Ill-posedness is identified as one of the main
characteristics of the inverse problems. So, a numerical algorithm based on the combination of discrete
mollification and space marching method is applied to conquer ill-posedness of the auxiliary inverse problem.
Moreover, a proof of stability and convergence of the aforementioned algorithm is provided. Eventually, the
efficiency of this method is illustrated by a numerical example. c⃝2016 All rights reserved.
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1. Introduction

The inverse heat conduction problems are widely practiced in many branches of physics, science and
engineering. These problems belong to the class of ill-posed problems in the sense that solution (if it exists)
does not continuously depend on the data. Thus, it is impossible to solve this problem using the classical
numerical methods and requires special techniques to be employed.

In the context of approximation method for this problem, many approaches have been investigated.
Such as function specification [1, 2], Newton-Raphson [7], Tikhonov regularization [25, 23, 24], Levenberg-
Marquardt (LM) [20], conjugate gradient [14, 20, 21], recursive least squared method [15] and singular value
decomposition method [10, 11, 12, 22].

However, most of the essays in this issue have been limited to the linear problems and just a few studies
have been done on the nonlinear inverse heat conduction problems. The aim of this paper is to study a
nonlinear inverse heat conduction problem in one dimensional space. Our strategy is to obtain the regularized
solution of the proposed problem by a stable and convergent algorithm based on discrete mollification and
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space marching method. Discrete mollification is a convolution based filtering procedure that is appropriate
for the regularization of ill-posed problems and for the stabilization of explicit schemes for the solution of
partial differential equations [1, 18].

Mollification method is recognized as a reliable regularization method that has been widely applied to
solve many ill-posed problems [18]. The idea of this method is very simple [13]: if the data of the problem
are not clear and only an approximate amount of data is accessible, it is recommended to find out a sequence
of mollification operators to map improper data into well-posed classes of the problem (mollify the improper
data). Consequently, the intended problem will be a well-posed one.

The remainder of the paper is organized as follows: In the forthcoming section, we will introduce the
mathematical formulation of the nonlinear inverse heat conduction problem and reformulate this problem.
Section 3 is devoted to review basic facts about the discrete mollification operator. In section 4, we first
regularize reformulated problem then we solve regularized problem by space marching method. Stability
and convergence analysis of the numerical algorithm is provided in section 5 and the last section include
illustrative examples.

2. Problem description

2.1. Direct problem

Let us consider a nonlinear initial boundary value heat conduction problem of determining u(x, t):

∂u(x, t)

∂t
− ∂

∂x
{a(u)∂u(x, t)

∂x
} = f(x, t), 0 < x < 1, 0 < t < T, (2.1)

u(x, 0) = φ(x), 0 ≤ x ≤ 1, (2.2)

a(u(0, t))
∂u(0, t)

∂x
= g1(t), 0 ≤ t ≤ T, (2.3)

u(1, t) = χ(t), 0 ≤ t ≤ T, (2.4)

where the diffusion coefficient a(u) is a positive and bounded function and φ(x), g1(t) and χ(t) are continuous
known functions. This problem is called a direct heat conduction problem. The existence and uniqueness of
the solution of this problem and more applications and background of the problem are discussed in [8, 18].

2.2. Inverse problem

Corresponding to the direct problem (2.1)-(2.4), we consider an inverse problem in which the initial
condition φ(x) and the boundary condition χ(t) are unknown. The unknown initial and boundary functions
should be calculated using known temperatures which are described mathematically in below:

u(x, T ) = g2(x), 0 ≤ x ≤ 1, (2.5)

u(0, t) = g3(t), 0 ≤ t ≤ T. (2.6)

Now using the transformation

v(x, t) = Ta(u(x, t)) =

∫ u(x,t)

0
a(s)ds,

which was applied by cannon [4, 5], the proposed inverse problem reduces to

∂v(x, t)

∂t
−A(v)

∂2v(x, t)

∂x2
= A(v)f(x, t), 0 < x < 1, 0 < t < T, (2.7)

v(x, 0) = φ1(x), 0 ≤ x ≤ 1, (2.8)

∂v(0, t)

∂x
= g1(t), 0 ≤ t ≤ T, (2.9)

v(1, t) = χ1(t), 0 ≤ t ≤ T, (2.10)
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with overspecified conditions

v(x, T ) = g4(x), 0 ≤ x ≤ 1, (2.11)

v(0, t) = g5(t), 0 ≤ t ≤ T, (2.12)

where

A(v) = a(T−1
a (v)), φ1(x) =

∫ u(x,0)

0
a(s)ds, χ1(t) =

∫ u(1,t)

0
a(s)ds, g4(x) =

∫ u(x,T )

0
a(s)ds

and

g5(t) =

∫ u(0,t)

0
a(s)ds.

Note that T
′
a(x) = a(x) > 0, so Ta(x) is an invertible function. The problem (2.7)-(2.12) is equivalent to

the problem (2.1)-(2.6). The problem (2.7)-(2.12) is somewhat simpler than (2.1)-(2.6), particularly in that
the boundary condition (2.9) is now linear. Once v(x, t) is known numerically, the unknown u(x, t) can be
calculated through

u(x, t) = T−1
a (v(x, t)).

Without loss of generality, we suppose that, instead of g1(t), g4(x) and g5(t) we have approximate amounts
of these functions presented as gε1(t), g

ε
4(t) and gε5(t) such that

∥gε1(t)− g1(t)∥∞ ≤ ε,

∥gε4(x)− g4(x)∥∞ ≤ ε,

∥gε5(t)− g5(t)∥∞ ≤ ε.

In the following, a stable and convergent numerical algorithm based on discrete mollification and space
marching method will be introduced to find the solution of problem (2.7)-(2.12). Because of the presence
noise in the problem’s data and ill-posedness of the problem (2.7)-(2.12), we first regularize the proposed
problem by discrete mollification method.

3. A summary of discrete mollification method

In this section from [6, 16], the basic idea of discrete mollification method is introduced. For more
information about this method see [19].
Let G = {g(xj) = gj}Mj=1 be a discrete function defined on K = {xj , j = 1, ..,M} ⊂ [0, 1] satisfying

0 ≤ x1 < x2 < .. < xM−1 < xM ≤ 1.

Set

sj =


0, j = 0,

1
2(xj + xj+1), j = 1, ..,M − 1,

1, j = M.

Let p > 0 is given. Then for any x ∈ Iδ = [pδ, 1− pδ] we define discrete mollification of G as follows:

JδG(x) =

M∑
j=1

(

∫ sj

sj−1

ρδ,p(x− s)ds)gj ,

where

ρδ,p(x) =

{
Apδ

−1 exp(−x2

δ2
), |x| ≤ pδ,

0, |x| > pδ,
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such that Ap = (
∫ p
−p exp(−s2)ds)−1 . We usually take p=3 and the radius of mollification, δ is selected

automatically by the GCV method (see more [19]). We note that

M∑
j=1

∫ sj

sj−1

ρδ,p(x− s)ds =

∫ pδ

−pδ
ρδ,p(s)ds = 1.

Set
∆x = max

1≤j≤M−1
|xj+1 − xj | .

In sequence, we will introduce the main properties relating discrete mollification method (see more [19]).

Theorem 3.1 ([9]). 1. Let g(x) ∈ C0,1(R1) and G = {g(xj) = gj}Mj=1 be the discrete version of g and

let Gε = {gεj}Mj=1 be the perturbed discrete version of g satisfying ∥G−Gε∥∞,K ≤ ε. Then there exists a
constant C, independent of δ, such that

∥JδGε − Jδg∥∞ ≤ C(ε+∆x).

2. If g′(x) ∈ C0,1(R1), let G = {g(xj) = gj}Mj=1 and Gε = {gεj}Mj=1 satisfying ∥G−Gε∥∞,K ≤ ε, then∥∥D(JδG
ε)− (Jδg)

′∥∥
∞ ≤ C

δ
(ε+∆x) + Cδ(∆x)2.

3. Suppose that G = {g(xj) = gj}Mj=1 be the discrete function defined on K, and Dδ
0 be a differentiation

operator defined by Dδ
0(G) = D(JδG)(x) then∥∥∥Dδ

0(G)
∥∥∥
∞,K

≤ C

δ
∥G∥∞,K .

3.1. Extension of data

In order to compute JδG(x) throughout the domain [0, 1], we have to extend discrete data function g to
a bigger interval Iδ′ = [−pδ, 1 + pδ] or confine this function to the Iδ = [pδ, 1 − pδ]. In this essay, the first
approach described in [19] is applied. An optimizing process is practiced to calculate the extension function
of g in the intervals of [−pδ, 0] and [1, 1 + pδ]. This process is introduced by Mejia in [17].

4. The regularized Problem and space marching algorithm

To solve proposed inverse problem we consider the following regularized problem which is formulate as

∂w(x, t)

∂t
−A(w)

∂2w(x, t)

∂x2
= A(w)f(x, t), 0 < x < 1, 0 < t < T, (4.1)

w(x, T ) = Jδ3g4(x), 0 ≤ x ≤ 1, (4.2)

∂w(0, t)

∂x
= Jδ01g1(t), 0 ≤ t ≤ 1, (4.3)

w(0, t) = Jδ2g5(t), 0 ≤ t ≤ T. (4.4)

Now, we solve regularized problem to determine w(x, t) satisfying (4.1)-(4.4). Let h = 1/M and k = T/N be
the space and time discretization parameters. The numerical approximations of functions w(jh, nk), wx(jh, nk)
and wt(jh, nk) are denoted by Un

j , Q
n
j and Rn

j , respectively.
The space marching scheme for (4.1)-(4.4) is defined by a system of finite differences

Un
j+1 =Un

j + hQn
j , (4.5)

Qn
j+1 =Qn

j + h
(Rn

j −A(Un
j )f

n
j )

A(Un
j )

, (4.6)

Rn
j+1 =Rn

j + h(D0)t(Jδj1
Qn

j ), (4.7)
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where D0 is the centered difference operator denoting by

D0f(t) =
f(t+∆t)− f(t−∆t)

2∆t
.

The algorithm of scheme (4.5)-(4.7) is as follows:
1. Choose the radii of mollification, δ1, δ2 and δ3 using GCV method.
2. Put

Un
0 = Jδ2g

ε
5(nk), n = 0, .., N ,

UN
j = Jδ3g

ε
4(jh), j = 1, ..,M ,

Qn
0 = Jδ01g

ε
1(nk), n = 0, .., N .

3. Perform linear exterapolation to compute R0
0.

4. Put
Rn

0 = Dt(Jδ2g
ε
5(nk)), n = 1, .., N.

5. Set j = 0 and do while j ≤ M − 1,

Un
j+1 =Un

j + hQn
j ,

Qn
j+1 =Qn

j + h
(Rn

j −A(Un
j )f

n
j )

A(Un
j )

,

Rn
j+1 =Rn

j + h(D0)t(Jδj1
Qn

j ).

In order to analyze stability and convergence of the numerical scheme, we assume

u(x, t) ∈ C2([0, 1]× [0, T ]).

5. Stability and convergence of the algorithm

In this section we establish the stability and convergence of the space marching scheme (4.5)-(4.7).
From now on we use the notation

|Yj | = max
n

{
∣∣Y n

j

∣∣}.
Theorem 5.1. (Stability theorem) There exists constant M1, such that

max{|UM | , |QM | , |RM | ,Mf1} ≤ exp(M1)max{|U0| , |Q0| , |R0| ,Mf1}.

Proof. Let minv{A(v)} = ξ, Mf1 = max(x,t)∈[0,1]×[0,T ] |A(v(x, t))f(x, t)|, From (4.5) and (4.6), we have∣∣Un
j+1

∣∣ ≤ (1 + h)max{
∣∣Un

j

∣∣ , ∣∣Qn
j

∣∣}, (5.1)

∣∣Qn
j+1

∣∣ ≤ (1 + hξ)max{
∣∣Qn

j

∣∣ , ∣∣Rn
j

∣∣ ,Mf1}. (5.2)

Applying theorem 3.1 and Eqn. (4.7), one may write∣∣Rn
j+1

∣∣ ≤ (1 + h
C

|δ|−∞
)max{

∣∣Qn
j

∣∣ , ∣∣Rn
j

∣∣}, (5.3)

where C is a constant which is independent of δ and

|δ|−∞ = min
j

(δj1).

Following (5.1)-(5.3)

max{|Uj+1| , |Qj+1| , |Rj+1| ,Mf1} ≤ (1 + hM1)max{|Uj | , |Qj | , |Rj | ,Mf1},
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where

M1 = max{1, ξ, C

|δ|−∞
}.

After M iteration of the last inequality, we achieve

max{|UM | , |QM | , |RM | ,Mf1} ≤ (1 + hM1)
M max{|U0| , |Q0| , |R0| ,Mf1},

which implies
max{|UM | , |QM | , |RM | ,Mf1} ≤ exp(M1)max{|U0| , |Q0| , |R0| ,Mf1}.

So, the space marching scheme (4.5)-(4.7) is stable and proof is complete for fixed M1.

Theorem 5.2. (Convergence theorem) For fixed δ, as h, k and ε tend to zero then the numerical scheme
(4.5)-(4.7) converge to the mollified exact solution.

Proof. Set

B = maxv{A(v)}, B3 = min
j,n

{A(wn
j )A(U

n
j )}, B4 = max

(x,t)∈[0,1]×[0,T ]
{|wt(x, t)|}.

We begin with the definition of the discrete error functions

∆Un
j = Un

j − w(jh, nk),

∆Qn
j = Qn

j − wx(jh, nk),

∆Rn
j = Rn

j − wt(jh, nk),

then, we obtain

∆Un
j+1= Un

j+1 − w((j + 1)h, nk)

= ∆Un
j + (Un

j+1 − Un
j )− (w((j + 1)h, nk)− w(jh, nk))

= ∆Un
j + h(Qn

j − wx(jh, nk)) +O(h2)

= ∆Un
j + h∆Qn

j +O(h2), (5.4)

∆Qn
j+1= Qn

j+1 − wx((j + 1)h, nk)

= ∆Qn
j + (Qn

j+1 −Qn
j )− (wx((j + 1)h, nk)− wx(jh, nk))

= ∆Qn
j + h(

(Rn
j −A(Un

j )f
n
j )

A(Un
j )

− wt(jh, nk)−A(w(jh, nk))f(jh, nk)

A(wn
j )

) +O(h2) (5.5)

and

∆Rn
j+1= Rn

j+1 − wt((j + 1)h, nk)

= ∆Rn
j + (Rn

j+1 −Rn
j )− (wt((j + 1)h, nk)− wt(jh, nk))

= ∆Rn
j + h(D0(Jδj1

Qn
j )− wxt(jh, nk)) +O(h2). (5.6)

Then, from (5.4) and (5.5), it is obtained that∣∣∆Un
j+1

∣∣ ≤ ∣∣∆Un
j

∣∣+ h
∣∣∆Qn

j

∣∣+O(h2), (5.7)

∣∣∆Qn
j+1

∣∣ ≤ ∣∣∆Qn
j

∣∣+ hB3{B
∣∣∆Rn

j

∣∣+ 2BB4}+O(h2). (5.8)

Due to the Theorem 3.1 and equation (5.6), we have

∣∣∆Rn
j+1

∣∣ ≤ ∣∣∆Rn
j

∣∣+ h(C

∣∣∣∆Qn
j

∣∣∣+ k

|δ|−∞
+ Cδk

2) +O(h2), (5.9)

which C and Cδ are constants.
Set
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∆j = max{
∣∣∣∆Un

j

∣∣∣ , ∣∣∣∆Qn
j

∣∣∣ , ∣∣∣∆Rn
j

∣∣∣}, C0 = max{1, BB3,
C

|δ|−∞
}, C1 =

Ck
|δ|−∞

+ Cδk
2 + 2BB3B4.

Then it is concluded that

∆j+1 ≤ (1 + hC0)∆j + hC1 +O(h2).

Therefore, after M iteration, we derive

∆M ≤ (1 + hC0)
M∆0 + h(1 + hC0)

M−1C1 + ...+ h(1 + hC0)C1 + hC1. (5.10)

Theorem 3.1 is directed to the following inequalities

|∆Un
0 | ≤C(ε+ k),

|∆Qn
0 | ≤C(ε+ k),

|∆Rn
0 | ≤

C

|δ|−∞
(ε+ k) + Cδk

2,

from these inequalities we see that when ε, h and k tend to zero, ∆0 and the right hand side of inequality
(5.10) tend to zero and so does ∆M and the proof is complete.

6. Numerical experiment

In this section, we present a numerical example to illustrate the effectiveness and stability of our proposed
method. Stability of the method with respect to noise in the data is investigated using noisy data. The
noisy discrete data functions are generated by adding a random perturbation to the exact data functions.
For example, for the boundary function g(t) we simulate noisy discrete data function as follows:

gε(tn) = g(tn) + rε, n = 0, 1, .., N,

where r is a random number in [−1, 1] and ε is the noise level. The radii of mollification are chosen
automatically by the GCV method. For checking the accuracy of our algorithm, we use weighted l2-norm
which for u(x, t) is formulate as √√√√ 1

MN

N∑
n=1

M∑
j=1

∣∣∣u(xj , tn)− Un
j

∣∣∣2.
In this example, we take T = 1. This example implemented using Mathematica 10.3.1 software.

Example 6.1. It is easy that the function a(u) = (u+ 1)2, satisfies in problem (2.1)-(2.6) with
φ(x) = sin(x)(1− cos(1))2, g1(t) = (1− cos(t− 1))2, χ(t) = sin(1)(1− cos(t− 1))2, g2(x) = 0, g3(t) = 0 and
f(x, t) is taken so that the exact solution is

u(x, t) = sin(x)(1− cos(t− 1))2.

Using the transformation

v(x, t) = Ta(u(x, t)) =

∫ u(x,t)

0
a(s)ds,

we have

v(x, t) =
(1 + u(x, t))3 − 1

3
=

(1 + sin(x)(1− cos(t− 1))2)3 − 1

3

and

A(v) = (3v + 1)
2
3 ,
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Table 1: Weighted l2 errors.

ε M N u(x, t) u(x, 0) u(1, t)

0.001 10 10 0.00398225 0.00891594 0.00613761
0.001 20 20 0.00325090 0.00820382 0.00567592
0.001 30 30 0.00300591 0.00770168 0.00561988
0.01 10 10 0.00622965 0.01128690 0.00880938
0.01 20 20 0.00550470 0.00965564 0.00884753
0.01 30 30 0.00522123 0.00950996 0.00819372

Figure 1: The absolute errors for u(x, 0) for three levels of noise with ε = 0.0001, 0.01, 0.1 and M = N = 30.

Figure 2: The exact and regularized solutions for u(x, 0) with noise level ε = 0.001.
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Figure 3: The exact and regularized solutions for u(1, t) with noise level ε = 0.001.

where v(x, t) is exact solution of (2.7)-(2.12). After solving problem (2.7)-(2.12) by the proposed method
the unknown u(x, t) can be calculated through

u(x, t) = (3v(x, t) + 1)
1
3 − 1.

Table 1 highlights the Weighted l2 errors in u(x, 0), u(1, t) and u(x, t) with two noise levels ε = 0.01 and
0.001. This Table and Figs. 1-3 show that at fix noise level ε with decreasing h and k the accuracy of our
algorithm will be increased. To investigate the dependence of errors of the solutions on the noise levels, the
absolute errors between the exact and computed u(x, 0) for three levels of noise ε = 0.0001, 0.01 and 0.1
with M = N = 30 is shown in Fig. 1.
Holistically, by this Fig. we can see as ε declines, the accuracy of approximated solutions will enhance. Our
approximate solutions are demonstrate the efficiency of the method computationally.
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