
Available online at http://vonneumann-publishing.com/cna
Commun. Nonlinear Anal. 2 (2016), 119–128

Research Article

Tripled Periodic Boundary Value Problems of Nonlinear Second Order
Differential Equations

Animesh Guptaa, Saurabh Manrob,∗

aH.No. 93/654, Ward No.-2 Gandhi Chowk Pachmarhi, Dist. Hoshangabad- 461881, Madhya Pradesh - India.
bB.No. 33, H.No. 223, Peer Khana Road Near Tiwari Di Kothi, Khanna-141401, Punjab-India.

Abstract

The present paper proposes a new monotone iteration principle for the existence as well as approximations
of the tripled solutions for a tripled periodic boundary value problem of second order ordinary nonlinear
differential equations. An algorithm for the tripled solutions is developed and it is shown that the sequences
of successive approximations defined in a certain way converge monotonically to the tripled solutions of the
related differential equations under some suitable hybrid conditions. A numerical example is also indicated
to illustrate the abstract theory developed in the paper. c⃝2016 All rights reserved.
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1. Introduction

Given a closed and bounded interval J = [0, T ] of a real line R, consider the tripled periodic boundary
value problems (in short TPBVPs) of nonlinear second order ordinary nonlinear differential equations (in
short DEs) of the form

{
−x′′(t) + λ2x(t) = f(t, x(t), y(t), z(t)),

x(0) = x(T ), x′(0) = x′(T ),
(1.1)

{
−y′′(t) + λ2x(t) = f(t, y(t), x(t), y(t)),

y(0) = y(T ), y′(0) = y′(T ),
(1.2)
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−z′′(t) + λ2x(t) = f(t, z(t), x(t), y(t)),

z(0) = z(T ), z′(0) = z′(T ),
(1.3)

for all t ∈ J , where λ ∈ R, λ > 0 and f : J × C(J,R)3 → R is a continuous function. By a coupled
solution of the TPBVPs (1.1), (1.2) and (1.3) we mean an ordered pair of differentiable functions (u, v, w) ∈
C(J,R) × C(J,R) × C(J,R) that satisfy the DEs (1.1), (1.2) and (1.3), where C(J,R) is the space of
continuous real-valued functions defined on J .

Let (E,⪯) be a partial ordered set and d be a metric on E such that (E,⪯, d) becomes a partially
ordered metric space. By E ×E × E we denote a metric space with the metric d∗ defined by

d∗((x, y, z), (u, v, w)) = d(x, u) + d(y, v) + d(z, w), (1.4)

for (x, y, z), (u, v, w) ∈ E × E × E. We define a partial order ⪯ in E × E × E as follows:
Let (x1, x2, x3), (y1, y2, y3) ∈ E × E ×E. Then,

(x1, x2, x3) ⪯ (y1, y2, y3) ⇐⇒ x1 ⪯ y1, x2 ⪰ y2 and x3 ⪯ y3. (1.5)

Then, the triplet (E×E×E,⪯, d∗) again becomes a partially ordered metric space. Let F : E×E×E → E
and consider the tripled mapping equations,

F(x, y, z) = x, F(y, x, y) = y and F(z, x, y) = z. (1.6)

A point (x∗, y∗, z∗) ∈ E × E × E is said to be a tripled solution or tripled fixed point for the coupled
mapping equation (1.6) if

F(x∗, y∗, z∗) = x∗, F(y∗, x∗, y∗) = y∗ and F(z∗, y∗, x∗) = z∗. (1.7)

We need the following definitions in what follows:

Definition 1.1. A partially ordered normed metric space (E,⪯, d) is called regular, if every nondecreasing
(resp. nonincreasing) sequence {xn} converges to x∗, then xn ⪯ x∗ (resp. xn ⪰ x∗) for all n ∈ N.

Definition 1.2. A mapping F : E×E×E → E is called partially continuous at a point (a, b, c) ∈ E×E×E
if for ϵ > 0, there exists a δ > 0, such that

d∗(F(x, y, z),F(a, b, c)) < ϵ,

whenever (x, y, z) is comparable to (a, b, c) and

d∗((x, y, z), (a, b, c)) < δ.

If F is partially continuous at every point of E×E×E, we say that F is partially continuous on E×E×E.

Remark 1.3. If F is partially continuous on E × E × E, then it is continuous on every totally ordered set
or chain in E × E × E.

Definition 1.4. A mapping F : E×E×E → E is called partially compact if F(C1×C2×C3) is a relatively
compact subset of E for all chains C1, C2 and C3 in E.

The details of compact and continuous operators may be found in the monograph by Heikkilä and
Lakshmikantham [13] and the references therein.

Definition 1.5. A mapping F is called mixed monotone, if F(x, y, z) is nondecreasing in x for each y ∈ E
and nonincreasing in y for each x ∈ E with respect to the order relation ⪯ in E.

Remark 1.6. If F is mixed monotone, then it is a nondecreasing mapping on E×E×E with respect to the
order relation ⪯ defined in E × E × E.
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Definition 1.7. The order relation ⪯ and the metric d on a non- empty set E are said to be compatible if
{xn}n∈N is a monotone, that is, monotone nondecreasing or monotone nonincreasing sequence in E and if
a subsequence {xnk

}n∈N of {xn}n∈N converges to x∗ implies that the whole sequence {xn}n∈N converges to
x∗. Similarly, given a partially ordered normed linear space (E,⪯, ∥.∥), the order relation ⪯ and the norm
∥.∥ are said to be compatible if ⪯ and the metric d defined through the norm ∥.∥ are compatible.

Clearly, the set R of real numbers with usual order relation ≤ and the metric defined by the absolute
value function has this property. Similarly, every finite dimensional Euclidean space Rn is compatible with
respect to usual component wise order relation and the standard norm in it.

Theorem 1.8. Let (E,⪯, d) be a regular partially ordered complete metric space such that the metric d
and the order relation ⪯ are compatible in every compact chain C of E. Let F , E × E × E → E is a
mixed monotone, partially continuous and partially compact mapping. If there exist elements x0, y0, z0 ∈ E
such that x0 ⪯ F(x0, y0, z0), y0 ⪰ F(y0, x0, y0) and y0 ⪯ F(y0, x0, y0), then F has a tripled fixed point
(x∗, y∗, z∗) and the sequences {xn},{yn} and {zn} defined by xn = F(xn−1, yn−1, zn−1) = Fn(x0, y0, z0), yn =
F(yn−1, xn−1, yn−1) = Fn(y0, x0, y0) and zn = F(zn−1, yn−1, xn−1) = Fn(z0, y0, x0) converge monotonically
to x∗, y∗ and z∗ respectively.

Proof. Define the sequences {xn} , {yn} and {zn} of points in E as follows. Choose

x1 = F (x0, y0, z0),

y1 = F (y0, x0, y0)

and
z1 = F (z0, y0, x0).

Then, x0 ⪯ x1, y1 ⪯ y0 and z1 ⪯ z0. Again, choose

x2 = F2(x0, y0, z0) = F(x1, y1, z1) = F(F(x0, y0, z0),F(y0, x0, y0),F(z0, y0, x0)) ⪰ F (x0, y0, z0) = x1.

Similarly we have

y2 = F2(y0, x0, y0) = F(y1, x1, y1) = F(F(y0, x0, y0),F(x0, y0, z0),F(y0, x0, y0)) ⪯ F (y0, x0, y0) = y1

and

z2 = F2(z0, y0, x0) = F(z1, y1, x1) = F(F(z0, y0, x0),F(x0, y0, z0),F(y0, x0, y0)) ⪰ F (z0, y0, x0) = x1.

Proceeding in this way, by induction, define
xn+1 = F(xn, yn, zn) = Fn(x0, y0, z0),

yn+1 = F(yn, xn, yn) = Fn(y0, x0, y0),

zn+1 = F(zn, yn, xn) = Fn(z0, y0, x0),

(1.8)

for n = 0, 1, 2 . . . so that
x0 ⪯ x1 ⪯ x2 ⪯ · · · ⪯ xn ⪯ . . . , (1.9)

y0 ⪰ y1 ⪰ y2 ⪰ · · · ⪰ yn ⪰ . . . (1.10)

and
z0 ⪯ z1 ⪯ z2 ⪯ · · · ⪯ zn ⪯ . . . . (1.11)

Thus, {xn}, {yn} and {zn} are respectively monotone nondecreasing and monotone nonincreasing se-
quences and so are chains in E. From the construction of {xn} , {yn} and {zn}, it follows that

{xn} ⊆ F({xn}, {yn}, {zn}) ⊆ F({xn} × {yn} × {zn}).
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Since F is partially compact on E×E×E, one has F({xn}×{yn}×{zn}) is a relatively compact subset of
E. As a result, F({xn} × {yn} × {zn}) is compact and that {xn} has a convergent subsequence converging
to a point, say x∗ ∈ E. Since d and ⪯ are compatible in every compact chain C of E, the whole sequence
{xn} converges to x∗. Similarly, the sequences {yn} converges to a point say y∗ ∈ E and {zn} converges
to a point say z∗ ∈ E. Equivalently, (xn, yn, zn) → (x∗, y∗, z∗) in the topology of the norm in E × E × E.
As E is a regular, we have that xn ⪯ x∗, yn ⪰ y∗ and zn ⪯ z∗ for all n ∈ N. Therefore, we obtain
(xn, yn, zn) ⪯ (x∗, y∗, z∗) for all n ∈ N. Finally, by the partial continuity of F , we obtain

x∗ = lim
n→∞

xn+1 = lim
n→∞

F(xn, yn, zn) = F(x∗, y∗, z∗),

y∗ = lim
n→∞

yn+1 = lim
n→∞

F(yn, xn, yn) = F(y∗, x∗, y∗)

and
z∗ = lim

n→∞
zn+1 = lim

n→∞
F(zn, yn, xn) = F(z∗, y∗, x∗).

Thus (x∗, y∗, z∗) is a tripled fixed point of the mapping F on E × E × E into itself. This completes the
proof.

Remark 1.9. The regularity of the partially ordered metric space E may be replaced with a stronger con-
dition of continuity than the partial continuity of the mappings F on E × E × E. Again, the condition of
compatibility of the order relation ⪯ and the norm ∥.∥ in every compact chain of E holds if every partially
compact subset of E possesses the compatibility property with respect to ⪯ and ∥.∥.

The simple fact concerning the compactibility of the order relation and the norm mentioned in Remark
1.9 has been used in formulating the main results of this paper. In the following section we prove the main
existence and approximation results for the TBVP (1.1), (1.2) and (1.3) defined on J .

2. Existence and Approximations Results

We place our considerations of the TBVPs (1.1), (1.2) and (1.3) in the function space C(J,R). We define
a norm ∥.∥ and the order relation ≤ in C(J,R) by

∥x∥ = sup
t∈J

|x(t)| (2.1)

and
x ≤ y ⇐⇒ x(t) ≤ y(t), (2.2)

for all t ∈ J . Clearly, (C(J,R), ∥.∥,≤) is a partially ordered complete normed linear space and has compati-
bility property with respect to the norm ∥.∥ and the order relation ≤ in certain subsets of it. The following
lemma in this connection is useful in what follows:

Lemma 2.1. Let (C(J,R),≤, ∥.∥) be a partially ordered Banach space with the norm ∥.∥ and the order
relation ≤ defined by (2.1) and (2.2). Then ∥.∥ and ≤ are compatible in every partially compact subset S
of C(J,R).

Proof. Let S be a partially compact subset of C(J,R) and let {xn}n∈N be a monotone nondecreasing sequence
of points in S. Then we have

x1(t) ≤ x2(t) ≤ · · · ≤ xn(t) ≤ . . . . (2.3)

for each t ∈ J .
Suppose that a subsequence {xnk

}k∈N of {xn}n∈N is convergent and converges to a point x in S. Then
the subsequence {xnk

(t)}k∈N of the monotone real sequence {xn(t)}n∈N is convergent. By monotone char-
acterization, the whole sequence {xn(t)}n∈N is convergent and converges to a point x(t) in S for each t ∈ J .
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This shows that the sequence{xn(t)}n∈N converges to x(t) point-wise on J . To show the convergence is
uniform, it is enough to show that the sequence {xn(t)}n∈N is equicontinuous. Since S is partially compact,
every chain or totally ordered set and consequently {xn}n∈N is an equicontinuous sequence by Arzelá-Ascoli
theorem. Hence {xn}n∈N is convergent and converges uniformly to x. As a result, ∥.∥ and ≤ are compatible
in S. This completes the proof.

We need the following definition in the sequel.

Definition 2.2. An ordered pair of differentiable functions (u, v, w) ∈ C(J,R) × C(J,R) × C(J,R) is said
to be a tripled lower solution of the TPBVPs of coupled differential equations (1.1), (1.2) and (1.3) if{

− u′′(t) + λ2u(t) = f(t, u(t), v(t), w(t)),

u(0) = u(T ), u′(0) = u′(T ),{
− v′′(t) + λ2v(t) = f(t, v(t), u(t), v(t)),

v(0) = v(T ), v′(0) = v′(T ),{
− w′′(t) + λ2w(t) = f(t, w(t), v(t), u(t)),

w(0) = w(T ), w′(0) = w′(T ),

for all t ∈ J . Similarly, an ordered pair of differentiable functions (p, q, r) ∈ C(J,R)× C(J,R)× C(J,R) is
said to be a tripled upper solution of the TPBVPs (1.1), (1.2) and (1.3) if the above inequalities are satisfied
with reverse sign.

We consider the following set of hypotheses in what follows:

(H1) f is bounded on J × R× R× R with bound M .

(H2) The function f(t, x, y, z) is nondecreasing in x, nonincreasing in y and nondecreasing in z for each
t ∈ J .

(H3) The TPBVPs (1.1), (1.2) and (1.3) have a lower coupled solution (u, v, w) ∈ C(J,R)×C(J,R)×C(J,R).
(H4) The TPBVPs (1.1), (1.2) and (1.3) have a lower coupled solution (p, q, r) ∈ C(J,R)×C(J,R)×C(J,R).

Lemma 2.3. For any σ ∈ L1(J,R), x is a solution to the differential equation{
− x′′(t) + λ2x(t) = σ(t), t ∈ J,

x(0) = x(T ), x′(0) = x′(T ),
(2.4)

if and only if it is a solution of the integral equation

x(t) =

∫ T

0
G(t, s)σ(s)ds, (2.5)

where, G(t, s) is the Green’s function associated to the PBVP{
− x′′(t) + λ2x(t) = 0, t ∈ J,

x(0) = x(T ), x′(0) = x′(T ),
(2.6)

Notice that the Green’s function G is continuous and nonnegative on J×J×J and therefore, the number
K := max{|G(t, s)| : t, s ∈ [0, T ]} exists.

We obtain, an application of above Lemma 2.3 as follows:

Lemma 2.4. A pair of function (u, v, w) ∈ C(J,R)×C(J,R)×C(J,R) is a tripled solution of the TPBVPs
(1.1), (1.2) and (1.3) if and only if u, v and w are the solutions of the nonlinear integral equations,

x(t) =

∫ T

0
G(t, s)f(s, x(s), y(s), z(s))ds, (2.7)
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y(t) =

∫ T

0
G(t, s)f(s, y(s), x(s), y(s))ds (2.8)

and

z(t) =

∫ T

0
G(t, s)f(s, z(s), y(s), x(s))ds, (2.9)

for all t ∈ J , where the Green’s function G(t, s) is given by (2.6).

Theorem 2.5. Assume that the hypotheses (H1) through (H3). Then the TPBVPs (1.1), (1.2) and (1.3)
have a tripled solution (x∗, y∗, z∗) defined on J and the sequences {xn}, {yn} and {zn} defined by

xn+1(t) =

∫ T

0
G(t, s)f(s, xn(s), yn(s), zn(s))ds, (2.10)

yn+1(t) =

∫ T

0
G(t, s)f(s, yn(s), xn(s), yn(s))ds (2.11)

and

zn+1(t) =

∫ T

0
G(t, s)f(s, zn(s), yn(s), xn(s))ds (2.12)

for each t ∈ J converge monotonically to x∗, y∗ and z∗ respectively.

Proof. Set E = C(J,R). Then, by Lemma 2.1, every compact chain in E possesses the compatibility
property with respect to the norm ∥.∥ and the order relation ≤ in E. Consider the mapping F on E×E×E
defined as:

F(x, y, z)(t) =

∫ T

0
G(t, s)f(s, x(s), y(s), z(s))ds, (2.13)

F(y, x, y)(t) =

∫ T

0
G(t, s)f(s, y(s), x(s), y(s))ds (2.14)

and

F(z, x, y)(t) =

∫ T

0
G(t, s)f(s, z(s), y(s), x(s))ds. (2.15)

Since Green’s function G is continuous on J × J × J , we have that F(x, y, z),F(y, x, y),F(z, y, x)) ∈ E. As
a result, F defines a mapping F : E×E×E → E. We shall show that F satisfies the conditions of Theorem
1.8. This will be achieved in a series of following steps.

Step-1. F is a mixed monotone operator on E × E × E.

Let x1, x2 ∈ S be such that x1 ≤ x2. Then, by hypothesis (H2),

F(x1, y, z)(t) =

∫ T

0
G(t, s)f(s, x1(s), y(s), z(t))ds

≤
∫ T

0
G(t, s)f(s, x2(s), y(s), z(t))ds

= F(x2, y, z)(t),
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for all t ∈ J . This shows that (x, y, z) is monotone nondecreasing in x for all t ∈ J and y, z ∈ S. Next, let
y1, y2 ∈ E be such that y1 ≤ y2. Then,

F(x, y1, z)(t) =

∫ T

0
G(t, s)f(s, x(s), y1(s), z(t))ds

≥
∫ T

0
G(t, s)f(s, x(s), y2(s), z(t))ds

= F(x, y2, z)(t),

for all t ∈ J and x ∈ S. Hence F(x, y, z) is monotone nonincreasing in y for all x, z ∈ E. Thus F is a mixed
monotone mapping on E × E × E and

F(x, y, z1)(t) =

∫ T

0
G(t, s)f(s, x(s), y(s), z1(t))ds

≤
∫ T

0
G(t, s)f(s, x(s), y(s), z2(t))ds

= F(x, y, z2)(t),

for all t ∈ J . This shows that (x, y, z) is monotone nondecreasing in z for all t ∈ J and x, y ∈ S.

Step-2. F is partially continuous mixed monotone operator on E × E × E.
Let {Xn}n∈N = {(xn, yn, zn)} be a monotone nondecreasing sequence in a chain C = C1 × C2 × C3 of

E × E × E such that Xn = (xn, yn, zn) → (x, y, z) = X and Xn ≤ X for all n ∈ N. Then, by dominated
convergence theorem,

lim
n→∞

F(Xn)(t) =

∫ T

0
G(t, s)[ lim

n→∞
f(s, xn(s), yn(s), zn(s))]ds

=

∫ T

0
G(t, s)f(s, x(s), y(s), z(s))ds

= F (X)(t),

for all t ∈ J . This shows that F (Xn) converges monotonically to F (X) pointwise on J . Next, we will show
that {F (Xn)}n∈N is an equicontinuous sequence of functions in E. Let t1, t2 ∈ J be arbitrary. Then, by
hypothesis (B2),

|F (Xn)(t2)− F (Xn)(t1)| ≤ |
∫ T

0
G(t2, s)f(s, xn(s), yn(s), zn(s))−

∫ T

0
G(t1, s)f(s, xn(s), yn(s), zn(s))|ds

≤
∫ T

0
|G(t2, s)−G(t2, s)||f(s, xn(s), yn(s), zn(s))|ds

≤ Mf

∫ T

0
|G(t2, s)−G(t2, s)|ds → 0 as t2 − t1 → 0

uniformly for all n ∈ N. This shows that the convergence F(Xn) → F(X) is uniform and hence F is a
partially continuous on E × E × E.
Step-3. F is a partially compact mixed monotone operator on E × E × E.

Let C1, C2 and C3 be three arbitrary chains in E. We show that F(C1×C2×C3) is a relatively compact
subset of E. To finish it is enough to prove that F(C1 ×C2 ×C3) is uniformly bounded and equicontinuous
set in E. Let x ∈ C1, y ∈ C2 and z ∈ C3 be arbitrary. Then, by (H1),

|F(x, y, z)(t)| ≤
∫ T

0
G(t, s)|f(s, x(s), y(s), z(t))|ds ≤ MfKT = r,
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for all t ∈ J . Taking the supremum over t, we obtain ∥F(x, y, z)∥ ≤ r for all x ∈ C1, y ∈ C2 and z ∈ C3.
Hence, F(C1 × C2 × C3) is a uniformly bounded subset of E. Next, we show that F(C1 × C2 × C3) is an
equicontinuous set in E. Let t1, t2 ∈ J be arbitrary. Then, for any z ∈ F(C1×C2×C3), there exist x ∈ C1,
y ∈ C2 and z ∈ C3 such that l = F(x, y, z). Without loss of generality, we may assume that x(t1) ≥ x(t2)
and y(t1) ≤ y(t2). Therefore, by the definition of F ,

|l(t1)− l(t2)| = |F(x, y, z)(t1)−F(x, y, z)(t2)|

= |
∫ t1

0
f(s, x(s), y(s), z(s))ds−

∫ t2

0
f(s, x(s), y(s), z(s))ds|

≤ |
∫ t1

t2

f(s, x(s), y(s), z(s))ds|

≤ Mf |t1 − t2|ds → 0 as t1 → t2

uniformly for all x ∈ C1, y ∈ C2 and z ∈ C3. As a result, we have

|F(x, y, z)(t1)−F(x, y, z)(t2)| → 0 as t1 → t2,

uniformly for all (x, y, z) ∈ C1×C2×C3. Consequently F(C1×C2×C3) is an equi-continuous set of E. We
apply Arzela-Ascoli theorem and deduce that F(C1×C2×C3) is a relatively compact subset of E. Hence F
is partially relatively compact on E ×E ×E. Now F is a partially continuous and partially compact mixed
monotone operator on E×E×E into E. Again, by hypothesis (H3), there exist elements x0, y0 and z0 in S
such that x0 ≤ F(x0, y0, z0), y0 ≥ F(y0, x0, y0) and z0 ≤ F(z0, y0, x0). Thus all the conditions of Theorem
1.8 are satisfied and hence the tripled equations F(x, y, z) = x, F(y, x, y) = y and F(z, y, x) = z have a
tripled solution (x∗, y∗, z∗) and the sequences {xn},{yn} and {zn} defined by (2.14) and (2.15) converge
monotonically to x∗, y∗ and z∗ respectively. This completes the proof.

Remark 2.6. The conclusion of Theorem 2.5 also remains true if we replace the hypothesis (H3) with (H4).
The proof of Theorem 2.5 under this new hypothesis is obtained using similar arguments with appropriate
modifications.

Example 2.7. Given a closed and bounded interval J = [0, 1] in R , consider the tripled PBVPs,{
− x′′(t) + x(t) = tanhx(t)− tanh y(t) + tanh z(t),

x(0) = x(1), x′(0) = x′(1),
(2.16)

{
− y′′(t) + y(t) = tanh y(t)− tanhx(t) + tanh y(t),

y(0) = y(1), y′(0) = y′(1)
(2.17)

and {
− z′′(t) + z(t) = tanh z(t)− tanh y(t) + tanhx(t),

z(0) = z(1), z′(0) = z′(1),
(2.18)

for all t ∈ [0, 1].
Here, the function f is given by

f(t, x, y, z) = tanhx− tanh y + tanh z,

for all t ∈ [0, 1] and x, y, z ∈ R . Clearly, f is uniformly continuous and bounded on J × R × R × R with
bound Mf = 2. Furthermore, f(t, x, y, z) is nondecreasing in x for each t ∈ J and y, z ∈ R, nonincreasing
in y for each t ∈ J and x, z ∈ R and is nondecreasing in z for each t ∈ J and x, y ∈ R. Finally, there exist
functions

x0(t) = −
[
e2(e−t − et)

(e− 1)
+

e(1− e−t)

(e− 1)

]
,
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y0(t) = −
[
e2(e−t − et)

(e− 1)
+

e(1− e−t)

(e− 1)

]
and

z0(t) = −
[
e2(e−t − et)

(e− 1)
+

e(1− e−t)

(e− 1)

]
,

such that {
− x′′0(t) + x0(t) = tanhx0(t)− tanh y0(t) + tanh z0(t),

x0(0) = x0(1), x
′
0(0) = x′0(1),

(2.19)

{
− y′′0(t) + y0(t) = tanh y0(t)− tanhx0(t) + tanh y0(t),

y0(0) = y0(1), y
′
0(0) = y′0(1)

(2.20)

and {
− z′′0 (t) + z0(t) = tanh z0(t)− tanh y0(t) + tanhx0(t),

z0(0) = z0(1), z
′
0(0) = z′0(1),

(2.21)

for all t ∈ J . Thus, the nonlinearity f satisfies all the hypotheses (H1) through (H3) of Theorem 2.5. Hence,
the TPBVPs (2.15) have a tripled solution (x∗, y∗, z∗) defined on [0, 1] and the sequences {xn}∞n=0, {yn}∞n=0

and {zn}∞n=0 of successive approximations defined by

xn+1(t) =

∫ 1

0
G(t, s)[tanhxn(s)− tanh yn(s) + tanh zn(s)]ds, t ∈ [0, 1],

yn+1(t) =

∫ 1

0
G(t, s)[tanh yn(s)− tanhxn(s) + tanh yn(s)]ds, t ∈ [0, 1]

and

zn+1(t) =

∫ 1

0
G(t, s)[tanh zn(s)− tanh yn(s) + tanhxn(s)]ds, t ∈ [0, 1],

where G(t, s) is a Green’s function associated with the PBVP{
− x′′(t) + x(t) = 0, t ∈ J,

x(0) = x(1), x′(0) = x′(1),
(2.22)

given by

G(t, s) =
1

2(e− 1)

{
e1+s−t + et−s; 0 ≤ s ≤ t ≤ 1,

e1+t−s + es−t; 0 ≤ t ≤ s ≤ 1,
(2.23)

converges monotonically to x∗, y∗ and z∗ respectively.

Remark 2.8. Finally, we mention that Theorem 1.8 may be applied to various nonlinear initial and boundary
value problems of ordinary coupled differential equations for proving the existence as well as algorithms for
the tripled solutions under suitable mixed monotonic and partial compactness type conditions.
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