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Abstract

In this paper, we prove the existence and uniqueness of fixed points for certain a-admissible mappings which
are F'(1),p)-contractions on metric spaces. Our results generalize and extend some well-known results in
the literature. (©2016 All rights reserved.
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1. Introduction

Geraghty in [2] introduced an interesting class of auxiliary function to refine the Banach contraction
mapping principle. Let F be the functions 3 : [0,00) — [0, 1) which satisfies the condition:

lim S(t,) =1 implies lim ¢, = 0.
n— 00 n—o0

By using 8 € F, Geraghty [2] proved the following remarkable theorem.

Theorem 1.1. ([2]) Let (X,d) be a complete metric space and T : X — X be an operator. Suppose that
there exists B € F, satisfying the condition,

B(t,) — 1 implies ¢, — 0.
If T satisfies the following inequality:
d(Tz,Ty) < B(d(x,y))d(x,y), for any z,y € X, (1.1)

then T has a unique fized point.
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Recently, Samet et al. [4] introduced the class of « — 1 contractive type mappings and obtain a fixed
point result for this new class of mappings in the set up of metric space which properly contains several
well-known fixed point theorems including Banach contraction principle.

In this work, we introduce the class of F'(1, p)-contractions and investigate the existence and uniqueness
of fixed points for the a-admissible mappings on the metric spaces and we will show that the fixed point
results in [3] and Theorem 1.1 are immediate corollaries of our results.

2. Preliminaries

Definition 2.1. Let f: X — X and o : X x X — (—o00, +00). We say that f is an a-admissible mapping
if a(z,y) > 1 implies a(fz, fy) > 1, for all z,y € X.

Definition 2.2. Let ¥ denote all functions ¢ : [0, 00) — [0, c0) satisfied:
(i) 1 is strictly increasing and continuous;
(#i) ¥ (t) = 0 if and only if ¢t = 0.

We let ¥ denote the class of the altering distance functions.

Definition 2.3. ([1]) An ultra altering distance function is a continuous, nondecreasing mapping
¢ :[0,00) — [0,00) such that ¢(t) > 0 for ¢ > 0.

We let ® denote the class of the ultra altering distance functions.

Definition 2.4. ([1]) A mapping F : [0,00)? — R is called C-class function if it is continuous and satisfies
following axioms:

1. F(s,t) <s.
2. F(s,t) = s implies that either s =0 or ¢ = 0.

We denote C-class functions by C.

Example 2.5. ([1]) The following functions F : [0,00)? — R are elements of C, for all s,t € [0, 00):

1. F(s,t)=s—t.

2. F(s,t) =ms, 0<m<1.

3. F(s,t) = 7 7 € (0,00)

4. F(s,t) =log(t+a®)/(1+1t), a > 1.

5. F(s,t) =In(1+a%)/2, a > e.

6. F(s,t) = (s+ 1)+ 11> 1,7 € (0,00).

3. Main Result
We start this section with the following theorem.

Theorem 3.1. let (X,d) be a complete metric space and T : X — X be an a-admissible mapping. Suppose
that the following condition is satisfied:

((d(Tw, Ty) +1))*@TD@T) < P(g(d(z,y)), p(d(z,y)) +1 (3.1)

forallz,y € X andl > 1, where ¢y € ¥, p € ® and F € C. Suppose that either,

(a) T is continuous;

or

(b) if {zn} is a sequence in X such that x,, = x, a(Tp, Tpt1) > 1 for all n, then ax, Tx) > 1.
If there exists xg € X such that a(xg,Txo) > 1. Then T has a fized point.
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Proof. Let xp € X such that a(xg,Tx¢) > 1. Define a sequence {z,} in X by z,, = T"x¢ = Tz, for all
n € N. Since T is an a-admissible mapping and a(zo, T'z¢) > 1, we deduce that a(z1, r2) = a(Txzo, T?x0) >
1. By continuing this process, we get a(zy,Tzy,) > 1 for all n € NU {0}. By the inequality (3.1) we have

Y(A(Tan1, Ton)) +1 < (@(d(Tny, Tay) + ) Tenmeton o
< Fp(d(@n-1,2n)), o(d(zp_1,22))) + 1,
then we have

1/f(d(l’ml’n+1)) < F(Qp(d(mn—l?xn))? @(d(xn—hxn))) < T/J(d(ﬂcn—hl’n))- (32)

Since v is strictly-increasing, inequality (3.2) implies that
d(xn; xn—&—l) S d(.%'n_l, xn)-
It follows that the sequence {d(xy,x,+1)} is decreasing. So, there exists r € R, such that

T}Ln;o d(Tp, Tpy1) =7

We want to prove that » = 0. Suppose to the contrary r > 0. From (3.2) we have

lim sup 7vb(d(xm xn-‘rl)) < lim sup F("p(d(xn—l: wn)): @(d(mn—la xn))) < limsup 1/1(61(%—1, xn))

Hence we get
U(r) < F(o(r), (r) < (r),
that means

E(r), e(r) = o(r).

By using the property of the functions F', ¢ and ¢, we obtain that ¢(r) = 0, or ¢(r) = 0, then r = 0, which
is contradiction and therefore
d(xn,Tpt1) >0 as n — oo. (3.3)

Now we prove that {z,} is Cauchy sequence in (X,d). Suppose that {z,} is not Cauchy sequence, that
means limy, ;00 d(Zr, Tm) # 0, so there exist € > 0 and {my} C N such that
d(Tpm,, Tn,) > €.
Suppose that k is the smallest integer which satisfies the above equation such that
(T, —1,%n,) < €.
Now we have
€ < d(Tmys Tny,) < ATy, Trmg—1) + ATmg—1, Tny ) < ATy, Tny—1) + €,
thus

lm d(xm,,zn,) = €. (3.4)

k—o00
Again we have
d(xmk ) xnk) S d(xmk 9 xmk+1) + d(xmk+17 xnk+1) + d($nk+17 xnk)

and
d(xkarl’ xnkJrl) < d(:Umk, $mk+1) + d(l‘mka:vnk) + d(wnkJrla :L'nk)

Taking the limit as &k — +o00, together with (3.3) we have

klgr;o d(zy, 41, Tnet1) = €. (3.5)
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Now by (3.1), (3.4) and (3.5) we have
¢(d($mk+1, xnk—I—l)) +1 < (I/J(d(xmk+1, :L‘nk+1)) +1 o(@my, Tom; )a(Tn, , Tny,)
= (AT, Tg,) + D) o )atng T
< F((d(@my, Tny))s 0(d(@my s Tny ) +1
< Y(d(@my, Tny)) + 1

Therefore we get

Dd(@myr1, 2y1)) < F@Q(A(@my, T0y))s (A (@, B0y ) < P(A(Z iy Ty, )

Letting £ — oo in the above inequality, we get

P(e) < F(¢(e),p(e)) < t(e).

that means
F((e), p(e)) = v(e),

by using the property of the functions F', 1) and ¢, we obtain that 1(¢) = 0 or ¢(¢) = 0, then € = 0, which
is contradiction and therefore {z,} is a Cauchy sequence. Now by completeness of X, z, — z, for some
z € X, that means

lim d(x,,z) =0.

n—oo
First, we suppose that T' is continuous, then we have

Tx = lim Tx, = lim x,11 = x.
n—oo n—oo

So z is a fixed point of 7. Now we suppose that (b) holds, then a(z,Tx) > 1. Now by (3.1) we have
Y(d(Tan, Tx)) +1 < (Y(d(Tzn, Tx)) + 1)@ Ton)a(@T)
< F(y(d(zn, 2)), p(d(2n, ) +1
< P(dzg, ) +1,
that is d(T'zy, Tz) < d(zy,x) and so we get

0<dTz,z) <dTx,xns1) +d(@,xns1) < d(z,zn) + d(x, Tnt1)-
Letting n — oo in the above inequality, we get d(Tz,z) = 0, that is, Tx = =. O]

Theorem 3.2. Let (X,d) be a complete metric space and T : X — X be an a-admissible mapping. Suppose
that the following condition is satisfied:
(a(z, Tx)ouly, Ty) + 1)PAT2TY) < oFW(d(z.y))¢(dy))) (3.6)

for all x,y € X, where y € ¥, ¢ € ® and F' € C. Suppose that either,

(a) T is continuous;

or

(b) if {zn} is a sequence in X such that x, — x, a(xy,Tpt1) > 1 for all n, then a(x, Tx) > 1.
If there exists xo € X such that a(xo,Txo) > 1. Then T has a fized point.

Proof. Let oy € X such that a(zg, Txg) > 1. Define a sequence {z,,} in X by z, = T"z¢ = Tx,_1 for all
n € N. Since T is an a-admissible mapping and a(xg, Trg) > 1, we deduce that a(z1,72) = a(Tx, T?x¢) >
1. By continuing this process, we get a(x,, Tz,) > 1 for all n € NU {0}. By the inequality (3.6) we have

o¥(d(Tzn—1,Tzn)) < (a(xn_l,Txn_l)a(:cn,Txn)—i—l)zp(d(Txn_thn))
< oF@((@n-1,2n))p(d(@n-1,2n)))
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then we have
Y(d(Tn, Tn+1)) < F(P(d(Tn—1,20)), p(d(Tn-1,20))) < P(d(@n—1,2n)). (3.7)

Now similar to the proof of Theorem 3.1 we get
d(xn, Tpt1) =0 as n — oo. (3.8)

Now we shall prove that {z,} is Cauchy sequence in (X,d). Suppose that {z,} is not Cauchy sequence,
that means limy, ;00 d(Zp, T ) # 0, so there exist ¢ > 0 and {m} C N such that

d(zpm,, Tn,) > €.
Let k be the smallest integer which satisfies above equation such that
d(Tm,—1,%n,) < €.

Again by the proof of Theorem 3.1, we obtain

kli)rrgo d(zpm,, Tn,) =€ (3.9)
and
lim m(2 41, Tn41) = €. (3.10)
k—o0

Now by (3.6), (3.9) and (3.10) we have

QY (ATrmy+1,Tny+1)) < (U@my s TTmy ) (T, T, ) + 1)¢(d(mmk+1,wnk+1))
< 2F(w(d(zmk’znk)):¢(d(zmk’znk)))7

therefore we get

Y(d(Tmyt1, Ty 1)) < F (AT s Ty )y (AT, Tny))) < (AT Ty, ))-

Letting £ — oo in the above inequality, we get

P(e) S F(Y(e), p(e) < 9e),

that means
F(y(e), p(e)) = (o).

By using the property of the functions F', 1) and ¢, we obtain that ¢ (g) = 0 or ¢(¢) = 0, then € = 0, which
is a contradiction and therefore {z,} is a Cauchy sequence. Now by completeness of X, x,, — z, for some
r € X, that means,

lim d(z,,z) = 0.

n—o0
First, we suppose that T' is continuous, then we have

Tx = lim Tx, = lim x,11 = x.
n—oo n—oo

So z is a fixed point of 7. Now we suppose that (b) holds, then a(z,Tx) > 1. By (3.6) we have

v TenT0) < (a(w, Tag)o(x, Tx) 4 1)V AT wnTw)
9 ((d(wn ), (d(zn,2)))

VAN

that is d(T'z,, Tz) < d(zy,x) and so we get
0<dTz,x) <dTx,xns1)+d@, xny1) < d(z,zn) + d(T, Tpg1)-

Letting n — oo in the above inequality, we get d(T'z,z) =0, so Tz = x. O
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Theorem 3.3. Let (X,d) be a complete metric space and T : X — X be an a-admissible mapping. Suppose
that the following condition is satisfied:

a(z, Tr)aly, Ty)p(d(Tz, Ty)) < F(y(d(z,y)), e(d(z,y))) (3.11)

for all x,y € X, wherey € ¥, o € ® and F' € C, Suppose that either,

(a) T is continuous;

or

(b) if {zn} is a sequence in X such that x, — =, a(zy, Tpt1) > 1 for all n, then a(x, Tx) > 1.
If there exists xo € X such that a(xo, Txg) > 1, then T has a fized point.

Proof. Let xy € X such that a(zg, Txg) > 1. Define a sequence {z,,} in X by z, = T"x¢ = Tx,_1 for all
n € N. Since T is an a-admissible mapping and a(xg, Trg) > 1, we deduce that a(z1,72) = a(Txo, T?x¢) >
1. By continuing this process, we get a(x,, Tz,) > 1 for all n € NU {0}. By the inequality (3.11) we have

V(d(Txp-1,Try)) < a(xn-1,Trn-1)c(xn, Tey)Y(d(TTH—1,Txy))
< F(pd(mp—1,2n)), p(d(Tn-1,2n))),

then we have
Y(d(2n, nt1)) < F((d(@n—1,2n)), o(d(Tn-1,2n))) < P(d(Tn-1,2n))- (3.12)

Now similar to the proof of Theorem 3.1 we get
d(zp,Tpt1) >0 as n— oo. (3.13)

Now we shall prove that {x,} is Cauchy sequence in (X,d). Therefore suppose that {x,} is not Cauchy
sequence, that means limy, o0 d(Zn, Tm) # 0, so there exist € > 0 and {m;} C N such that

d(zpm,, Tn,) > €.
Suppose that k is the smallest integer which satisfies above equation such that
(T, —1,%n,) < €.

Again by the proof of Theorem 3.1 we obtain that

lim d(zm,,zn,) =€ (3.14)
k—oo
and
lim m(zy, 41, Tn,+1) = €. (3.15)
k—o00

Now by (3.11), (3.14) and (3.15) we have

ATy, Ty, )Ty, Ty, )V (ATt 15 Tragr1))
F(¢(d(xmk ) l'nk))a ‘P(d(l'mka :En/g)))’

¢(d($mk+17 l‘nk+1)) <
<

therefore we get

w(d(xmk—l-lyxnk—i-l)) < F(@/)(d(xmkv xnk))a ‘P(d(xmmxnk))) < w(d(xmwx"k))

Letting £ — oo in the above inequality, we get

that means
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By using the property of the functions F', ¢ and ¢, we obtain that 1(¢) = 0 or ¢(e) = 0, then € = 0, which
is contradiction and therefore {x,} is a Cauchy sequence. Now by completeness of X, x,, — z, for some

r € X, that means,
lim d(xy,,z) =0.

n—oo

First, we suppose that 7' is continuous, then we have

Tx = lim Tx, = lim x,11 = x.
n—oo n—oo

So z is a fixed point of 7. Now we suppose that (b) holds then «(z,Tx) > 1. Now by (3.11) we have

Y(d(Txy, Tx)) oz, Tey)a(z, Tr)Y(d(Tx,, TT))

F(d(zn, x)), p(d(zn, ))),

that is, d(T'xp, Tx) < d(zp,x), and so we get

<
<

0<dTz,z) <dTx,xns1)+d(@, xny1) < d(z,z) + d(x, Tpg1)-
Letting n — oo in the above inequality, we get d(T'z,x) = 0, that is, Tx = x. O
Theorem 3.4. Assume that all of the hypotheses of Theorems 3.1, or 3.2 or 3.3 hold. Adding the following
condition:
(c) if Tx = x then o(x,Tx) > 1,
then the fixed point of T is unique.

Proof. Suppose that u,v € X are two fixed points of T such that u # v. Then a(u,Tu) > 1 and a(v, Tv) > 1.
For Theorem 3.1 we have

Y(d(Tu, Tv) + 1 < ((d(Tu, Tv) 4 1)) @TW@T) < By(d(u,v)), pd(u, v)) + 1. (3.16)

For Theorem 3.2 we have
oV ATwTV) < (ou, Tu)a(v, Tv) + 1)PATwTv) < gF(duv).eldwv) (3.17)

For Theorem 3.3 we have

Y(d(Tu, Tv)) < (a(u, Tu)a(v, Tv) + 1)p(d(Tu, Tv)) < F((d(u,v)), p(d(u,v))). (3.18)
Therefore the equations (3.16), (3.17) and (3.18) imply that

F(d(u, v)), ¢(d(u, v))) = ¢ (d(Tu, Tv))
and so by the properties of functions F', ¢ and ¢ we have
d(u,v) =0,

thus
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4. Consequences

By Theorems 3.1, 3.2 and 3.3 we obtain the following corollaries as an extension of several known results
in the literature.
If we let ¢(t) = (t) = t, we get the following three corollaries:

Corollary 4.1. Let (X, d) be a complete metric space and T : X — X be an a-admissible mapping. Suppose
that the following condition is satisfied:

(d(Tx, Ty) +1)* ST < F(d(z,y)), d(z,y)) +1 (4.1)

forallz,y e X andl > 1, where ¢y € ¥, ¢ € ® and F € C, Suppose that either,

(a) T is continuous;

or

(b) if {zn} is a sequence in X such that x,, = x, a(Tp, Tpt1) > 1 for all n, then ax, Tx) > 1.
If there exists xg € X such that a(xg,Txo) > 1. Then T has a fized point.

Corollary 4.2. Let (X,d) be a complete metric space and T : X — X be an a-admissible mapping. Suppose
that the following conditions are satisfied:

(az, Tx)aly, Ty) + 1)UT=TY) < oF(dzy)).d(z.y)) (4.2)

forallxz,y € X andl > 1, where ¢y € ¥, v € ® and F € C, Suppose that either,

(a) T is continuous;

or

(b) if {zn} is a sequence in X such that x, — ©, a(xy, Tpt1) > 1 for all n, then a(x, Tx) > 1.
If there exists xo € X such that a(xog,Txo) > 1. Then T has a fized point.

Corollary 4.3. Let (X, d) be a complete metric space and T : X — X be an a-admissible mapping. Suppose
that the following conditions are satisfied:

a(z, Tz)aly, Ty)d(Tz, Ty) < F(d(z,y), d(z,y)) (4.3)

forallx,y € X andl > 1, where ¢y € ¥, ¢ € ® and F € C, Suppose that either,

(a) T is continuous;

or

(b) if {zn} is a sequence in X such that x,, = x, a(Tp, Tpi1) > 1 for all n, then ax, Tx) > 1.
If there exists xo € X such that a(xo,Txo) > 1. Then T has a fized point.

If welet B €T, o(t) =1(t) =t and F(s,t) = B(s)s, then the following results of [3] have derived from
our results.

Corollary 4.4 (Theorem 4 in [3]). let (X, m) be a complete metric space and T : X — X be an a-admissible
mapping. Assume that there exists a function B : RT — [0,1] such that for any bounded sequence {t,} of
positive reals, B(t,) — 1 implies t, — 0 and

(d(Tx, Ty) + H)*&TDWTY) < B(d(2, y))d(z,y) + 1 (4.4)

for all x,y € X where l > 1. Suppose that either,

(a) T is continuous;

or

(b) if {zn} is a sequence in X such that x,, — x, a(Tp, Tpt1) > 1 for all n, then ax, Tx) > 1.
If there exists xg € X such that a(xg,Txo) > 1. Then T has a fized point.
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Corollary 4.5 (Theorem 6 in [3]). let (X, m) be a complete metric space and T : X — X be an a-admissible
mapping. Assume that there exists a function 3 : RT™ — [0,1] such that for any bounded sequence {t,} of
positive reals, B(t,) — 1 implies t,, — 0 and

(a(z, Tx)oly, Ty))WT=TY) < 9Bld@y))d.y) (4.5)

for all x,y € X where | > 1. Suppose that either,

(a) T is continuous;

or

(b) if {zn} is a sequence in X such that x, — x, a(xy, Tpt1) > 1 for all n, then a(x,Tx) > 1.
If there exists xo € X such that a(xo,Txo) > 1. Then T has a fized point.

Corollary 4.6 (Theorem 8 in [3]). let (X, m) be a complete metric space and T : X — X be an a-admissible
mapping. Assume that there exists a function B : Rt — [0,1] such that, for any bounded sequence {t,} of
positive reals, B(t,) — 1 implies t,, — 0 and

(a(x, Tr)a(y, Ty))d(Tx, Ty) < B(d(z,y))d(z,y) (4.6)

for all x,y € X where l > 1. Suppose that either,

(a) T is continuous;

or

(b) if {zn} is a sequence in X such that x,, = x, a(Tp, Tpt1) > 1 for all n, then ax, Tx) > 1.
If there exists xg € X such that a(xg,Txo) > 1. Then T has a fized point.
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