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Abstract

In this paper, we prove the existence and uniqueness of fixed points for certain α-admissible mappings which
are F (ψ,φ)-contractions on metric spaces. Our results generalize and extend some well-known results in
the literature. c⃝2016 All rights reserved.
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1. Introduction

Geraghty in [2] introduced an interesting class of auxiliary function to refine the Banach contraction
mapping principle. Let F be the functions β : [0,∞) → [0, 1) which satisfies the condition:

lim
n→∞

β(tn) = 1 implies lim
n→∞

tn = 0.

By using β ∈ F , Geraghty [2] proved the following remarkable theorem.

Theorem 1.1. ([2]) Let (X, d) be a complete metric space and T : X → X be an operator. Suppose that
there exists β ∈ F , satisfying the condition,

β(tn) → 1 implies tn → 0.

If T satisfies the following inequality:

d(Tx, Ty) ≤ β(d(x, y))d(x, y), for any x, y ∈ X, (1.1)

then T has a unique fixed point.
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Recently, Samet et al. [4] introduced the class of α − ψ contractive type mappings and obtain a fixed
point result for this new class of mappings in the set up of metric space which properly contains several
well-known fixed point theorems including Banach contraction principle.

In this work, we introduce the class of F (ψ,φ)-contractions and investigate the existence and uniqueness
of fixed points for the α-admissible mappings on the metric spaces and we will show that the fixed point
results in [3] and Theorem 1.1 are immediate corollaries of our results.

2. Preliminaries

Definition 2.1. Let f : X → X and α : X ×X → (−∞,+∞). We say that f is an α-admissible mapping
if α(x, y) ≥ 1 implies α(fx, fy) ≥ 1, for all x, y ∈ X.

Definition 2.2. Let Ψ denote all functions ψ : [0,∞) → [0,∞) satisfied:
(i) ψ is strictly increasing and continuous;
(ii) ψ (t) = 0 if and only if t = 0.

We let Ψ denote the class of the altering distance functions.

Definition 2.3. ([1]) An ultra altering distance function is a continuous, nondecreasing mapping
φ : [0,∞) → [0,∞) such that φ(t) > 0 for t > 0.

We let Φ denote the class of the ultra altering distance functions.

Definition 2.4. ([1]) A mapping F : [0,∞)2 → R is called C-class function if it is continuous and satisfies
following axioms:

1. F (s, t) ≤ s.

2. F (s, t) = s implies that either s = 0 or t = 0.

We denote C-class functions by C.

Example 2.5. ([1]) The following functions F : [0,∞)2 → R are elements of C, for all s, t ∈ [0,∞):

1. F (s, t) = s− t.

2. F (s, t) = ms, 0<m<1.

3. F (s, t) = s
(1+t)r ; r ∈ (0,∞).

4. F (s, t) = log(t+ as)/(1 + t), a > 1.

5. F (s, t) = ln(1 + as)/2, a > e.

6. F (s, t) = (s+ l)(1/(1+t)
r) − l, l > 1, r ∈ (0,∞).

3. Main Result

We start this section with the following theorem.

Theorem 3.1. let (X, d) be a complete metric space and T : X → X be an α-admissible mapping. Suppose
that the following condition is satisfied:

(ψ(d(Tx, Ty) + l))α(x,Tx)α(y,Ty) ≤ F (ψ(d(x, y)), φ(d(x, y)) + l (3.1)

for all x, y ∈ X and l ≥ 1, where ψ ∈ Ψ, φ ∈ Φ and F ∈ C. Suppose that either,
(a) T is continuous;
or
(b) if {xn} is a sequence in X such that xn → x, α(xn, xn+1) ≥ 1 for all n, then α(x, Tx) ≥ 1.
If there exists x0 ∈ X such that α(x0, Tx0) ≥ 1. Then T has a fixed point.
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Proof. Let x0 ∈ X such that α(x0, Tx0) ≥ 1. Define a sequence {xn} in X by xn = Tnx0 = Txn−1 for all
n ∈ N. Since T is an α-admissible mapping and α(x0, Tx0) ≥ 1, we deduce that α(x1, x2) = α(Tx0, T

2x0) ≥
1. By continuing this process, we get α(xn, Txn) ≥ 1 for all n ∈ N ∪ {0}. By the inequality (3.1) we have

ψ(d(Txn−1, Txn)) + l ≤ (ψ(d(Txn−1, Txn) + l))α(xn−1,Txn−1)α(xn,Txn)

≤ F (ψ(d(xn−1, xn)), φ(d(xn−1, xn))) + l,

then we have

ψ(d(xn, xn+1)) ≤ F (ψ(d(xn−1, xn)), φ(d(xn−1, xn))) ≤ ψ(d(xn−1, xn)). (3.2)

Since ψ is strictly-increasing, inequality (3.2) implies that

d(xn, xn+1) ≤ d(xn−1, xn).

It follows that the sequence {d(xn, xn+1)} is decreasing. So, there exists r ∈ R+ such that

lim
n→∞

d(xn, xn+1) = r.

We want to prove that r = 0. Suppose to the contrary r > 0. From (3.2) we have

lim sup
n→∞

ψ(d(xn, xn+1)) ≤ lim sup
n→∞

F (ψ(d(xn−1, xn)), φ(d(xn−1, xn))) ≤ lim sup
n→∞

ψ(d(xn−1, xn)).

Hence we get

ψ(r) ≤ F (ψ(r), φ(r)) ≤ ψ(r),

that means

F (ψ(r), φ(r)) = ψ(r).

By using the property of the functions F , ψ and φ, we obtain that ψ(r) = 0, or φ(r) = 0, then r = 0, which
is contradiction and therefore

d(xn, xn+1) → 0 as n → ∞. (3.3)

Now we prove that {xn} is Cauchy sequence in (X, d). Suppose that {xn} is not Cauchy sequence, that
means limn,m→∞ d(xn, xm) ̸= 0, so there exist ε > 0 and {mk} ⊂ N such that

d(xmk
, xnk

) ≥ ε.

Suppose that k is the smallest integer which satisfies the above equation such that

d(xmk−1, xnk
) < ε.

Now we have

ε ≤ d(xmk
, xnk

) ≤ d(xmk
, xmk−1) + d(xmk−1, xnk

) < d(xmk
, xmk−1) + ε,

thus

lim
k→∞

d(xmk
, xnk

) = ε. (3.4)

Again we have

d(xmk
, xnk

) ≤ d(xmk
, xmk+1) + d(xmk+1, xnk+1) + d(xnk+1, xnk

)

and

d(xmk+1, xnk+1) ≤ d(xmk
, xmk+1) + d(xmk

, xnk
) + d(xnk+1, xnk

).

Taking the limit as k → +∞, together with (3.3) we have

lim
k→∞

d(xlk+1, xnk+1) = ε. (3.5)
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Now by (3.1), (3.4) and (3.5) we have

ψ(d(xmk+1, xnk+1)) + l ≤ (ψ(d(xmk+1, xnk+1)) + l)α(xmk
,Txmk

)α(xnk
,Txnk

)

= (ψ(d(Txmk
, Txnk

) + l))α(xmk
,Txmk

)α(xnk
,Txnk

)

≤ F (ψ(d(xmk
, xnk

)), φ(d(xmk
, xnk

))) + l

≤ ψ(d(xmk
, xnk

)) + l.

Therefore we get

ψ(d(xmk+1, xnk+1)) ≤ F (ψ(d(xmk
, xnk

)), φ(d(xmk
, xnk

))) ≤ ψ(d(xmk
, xnk

)).

Letting k → ∞ in the above inequality, we get

ψ(ε) ≤ F (ψ(ε), φ(ε)) ≤ ψ(ε).

that means
F (ψ(ε), φ(ε)) = ψ(ε),

by using the property of the functions F , ψ and φ, we obtain that ψ(ε) = 0 or φ(ε) = 0, then ε = 0, which
is contradiction and therefore {xn} is a Cauchy sequence. Now by completeness of X, xn → x, for some
x ∈ X, that means

lim
n→∞

d(xn, x) = 0.

First, we suppose that T is continuous, then we have

Tx = lim
n→∞

Txn = lim
n→∞

xn+1 = x.

So x is a fixed point of T . Now we suppose that (b) holds, then α(x, Tx) ≥ 1. Now by (3.1) we have

ψ(d(Txn, Tx)) + l ≤ (ψ(d(Txn, Tx)) + l)α(xn,Txn)α(x,Tx)

≤ F (ψ(d(xn, x)), φ(d(xn, x))) + l

≤ ψ(d(xn, x)) + l,

that is d(Txn, Tx) ≤ d(xn, x) and so we get

0 ≤ d(Tx, x) ≤ d(Tx, xn+1) + d(x, xn+1) ≤ d(x, xn) + d(x, xn+1).

Letting n→ ∞ in the above inequality, we get d(Tx, x) = 0, that is, Tx = x.

Theorem 3.2. Let (X, d) be a complete metric space and T : X → X be an α-admissible mapping. Suppose
that the following condition is satisfied:

(α(x, Tx)α(y, Ty) + 1)ψ(d(Tx,Ty)) ≤ 2F (ψ(d(x,y)),φ(d(x,y))) (3.6)

for all x, y ∈ X, where ψ ∈ Ψ, φ ∈ Φ and F ∈ C. Suppose that either,
(a) T is continuous;
or
(b) if {xn} is a sequence in X such that xn → x, α(xn, xn+1) ≥ 1 for all n, then α(x, Tx) ≥ 1.
If there exists x0 ∈ X such that α(x0, Tx0) ≥ 1. Then T has a fixed point.

Proof. Let x0 ∈ X such that α(x0, Tx0) ≥ 1. Define a sequence {xn} in X by xn = Tnx0 = Txn−1 for all
n ∈ N. Since T is an α-admissible mapping and α(x0, Tx0) ≥ 1, we deduce that α(x1, x2) = α(Tx0, T

2x0) ≥
1. By continuing this process, we get α(xn, Txn) ≥ 1 for all n ∈ N ∪ {0}. By the inequality (3.6) we have

2ψ(d(Txn−1,Txn)) ≤ (α(xn−1, Txn−1)α(xn, Txn) + 1)ψ(d(Txn−1,Txn))

≤ 2F (ψ(d(xn−1,xn)),φ(d(xn−1,xn))),
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then we have
ψ(d(xn, xn+1)) ≤ F (ψ(d(xn−1, xn)), φ(d(xn−1, xn))) ≤ ψ(d(xn−1, xn)). (3.7)

Now similar to the proof of Theorem 3.1 we get

d(xn, xn+1) → 0 as n → ∞. (3.8)

Now we shall prove that {xn} is Cauchy sequence in (X, d). Suppose that {xn} is not Cauchy sequence,
that means limn,m→∞ d(xn, xm) ̸= 0, so there exist ε > 0 and {mk} ⊂ N such that

d(xmk
, xnk

) ≥ ε.

Let k be the smallest integer which satisfies above equation such that

d(xmk−1, xnk
) < ε.

Again by the proof of Theorem 3.1, we obtain

lim
k→∞

d(xmk
, xnk

) = ε (3.9)

and
lim
k→∞

m(xlk+1, xnk+1) = ε. (3.10)

Now by (3.6), (3.9) and (3.10) we have

2ψ(d(xmk+1,xnk+1)) ≤ (α(xmk
, Txmk

)α(xnk
, Txnk

) + 1)ψ(d(xmk+1,xnk+1))

≤ 2F (ψ(d(xmk
,xnk

)),φ(d(xmk
,xnk

))),

therefore we get

ψ(d(xmk+1, xnk+1)) ≤ F (ψ(d(xmk
, xnk

)), φ(d(xmk
, xnk

))) ≤ ψ(d(xmk
, xnk

)).

Letting k → ∞ in the above inequality, we get

ψ(ε) ≤ F (ψ(ε), φ(ε)) ≤ ψ(ε),

that means
F (ψ(ε), φ(ε)) = ψ(ε).

By using the property of the functions F , ψ and φ, we obtain that ψ(ε) = 0 or φ(ε) = 0, then ε = 0, which
is a contradiction and therefore {xn} is a Cauchy sequence. Now by completeness of X, xn → x, for some
x ∈ X, that means,

lim
n→∞

d(xn, x) = 0.

First, we suppose that T is continuous, then we have

Tx = lim
n→∞

Txn = lim
n→∞

xn+1 = x.

So x is a fixed point of T . Now we suppose that (b) holds, then α(x, Tx) ≥ 1. By (3.6) we have

2ψ(d(Txn,Tx)) ≤ (α(xn, Txn)α(x, Tx) + 1)ψ(d(Txn,Tx))

≤ 2F (ψ(d(xn,x)),φ(d(xn,x))),

that is d(Txn, Tx) ≤ d(xn, x) and so we get

0 ≤ d(Tx, x) ≤ d(Tx, xn+1) + d(x, xn+1) ≤ d(x, xn) + d(x, xn+1).

Letting n→ ∞ in the above inequality, we get d(Tx, x) = 0, so Tx = x.



Hossein Monfared, Mehdi Asadi, Mahdi Azhini, Commun. Nonlinear Anal. 2 (2016), 86–94 91

Theorem 3.3. Let (X, d) be a complete metric space and T : X → X be an α-admissible mapping. Suppose
that the following condition is satisfied:

α(x, Tx)α(y, Ty)ψ(d(Tx, Ty)) ≤ F (ψ(d(x, y)), φ(d(x, y))) (3.11)

for all x, y ∈ X, where ψ ∈ Ψ, φ ∈ Φ and F ∈ C, Suppose that either,
(a) T is continuous;
or
(b) if {xn} is a sequence in X such that xn → x, α(xn, xn+1) ≥ 1 for all n, then α(x, Tx) ≥ 1.
If there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, then T has a fixed point.

Proof. Let x0 ∈ X such that α(x0, Tx0) ≥ 1. Define a sequence {xn} in X by xn = Tnx0 = Txn−1 for all
n ∈ N. Since T is an α-admissible mapping and α(x0, Tx0) ≥ 1, we deduce that α(x1, x2) = α(Tx0, T

2x0) ≥
1. By continuing this process, we get α(xn, Txn) ≥ 1 for all n ∈ N ∪ {0}. By the inequality (3.11) we have

ψ(d(Txn−1, Txn)) ≤ α(xn−1, Txn−1)α(xn, Txn)ψ(d(Txn−1, Txn))

≤ F (ψ(d(xn−1, xn)), φ(d(xn−1, xn))),

then we have

ψ(d(xn, xn+1)) ≤ F (ψ(d(xn−1, xn)), φ(d(xn−1, xn))) ≤ ψ(d(xn−1, xn)). (3.12)

Now similar to the proof of Theorem 3.1 we get

d(xn, xn+1) → 0 as n → ∞. (3.13)

Now we shall prove that {xn} is Cauchy sequence in (X, d). Therefore suppose that {xn} is not Cauchy
sequence, that means limn,m→∞ d(xn, xm) ̸= 0, so there exist ε > 0 and {mk} ⊂ N such that

d(xmk
, xnk

) ≥ ε.

Suppose that k is the smallest integer which satisfies above equation such that

d(xmk−1, xnk
) < ε.

Again by the proof of Theorem 3.1 we obtain that

lim
k→∞

d(xmk
, xnk

) = ε (3.14)

and

lim
k→∞

m(xlk+1, xnk+1) = ε. (3.15)

Now by (3.11), (3.14) and (3.15) we have

ψ(d(xmk+1, xnk+1)) ≤ α(xmk
, Txmk

)α(xnk
, Txnk

)ψ(d(xmk+1, xnk+1))

≤ F (ψ(d(xmk
, xnk

)), φ(d(xmk
, xnk

))),

therefore we get

ψ(d(xmk+1, xnk+1)) ≤ F (ψ(d(xmk
, xnk

)), φ(d(xmk
, xnk

))) ≤ ψ(d(xmk
, xnk

)).

Letting k → ∞ in the above inequality, we get

ψ(ε) ≤ F (ψ(ε), φ(ε)) ≤ ψ(ε),

that means

F (ψ(ε), φ(ε)) = ψ(ε).
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By using the property of the functions F , ψ and φ, we obtain that ψ(ε) = 0 or φ(ε) = 0, then ε = 0, which
is contradiction and therefore {xn} is a Cauchy sequence. Now by completeness of X, xn → x, for some
x ∈ X, that means,

lim
n→∞

d(xn, x) = 0.

First, we suppose that T is continuous, then we have

Tx = lim
n→∞

Txn = lim
n→∞

xn+1 = x.

So x is a fixed point of T . Now we suppose that (b) holds then α(x, Tx) ≥ 1. Now by (3.11) we have

ψ(d(Txn, Tx)) ≤ α(xn, Txn)α(x, Tx)ψ(d(Txn, Tx))

≤ F (ψ(d(xn, x)), φ(d(xn, x))),

that is, d(Txn, Tx) ≤ d(xn, x), and so we get

0 ≤ d(Tx, x) ≤ d(Tx, xn+1) + d(x, xn+1) ≤ d(x, xn) + d(x, xn+1).

Letting n→ ∞ in the above inequality, we get d(Tx, x) = 0, that is, Tx = x.

Theorem 3.4. Assume that all of the hypotheses of Theorems 3.1, or 3.2 or 3.3 hold. Adding the following
condition:
(c) if Tx = x then α(x, Tx) ≥ 1,
then the fixed point of T is unique.

Proof. Suppose that u, v ∈ X are two fixed points of T such that u ̸= v. Then α(u, Tu) ≥ 1 and α(v, Tv) ≥ 1.
For Theorem 3.1 we have

ψ(d(Tu, Tv) + l ≤ (ψ(d(Tu, Tv) + l))α(u,Tu)α(v,Tv) ≤ F (ψ(d(u, v)), φd(u, v)) + l. (3.16)

For Theorem 3.2 we have

2ψ(d(Tu,Tv)) ≤ (α(u, Tu)α(v, Tv) + 1)ψ(d(Tu,Tv)) ≤ 2F (ψ(d(u,v)),φ(d(u,v))). (3.17)

For Theorem 3.3 we have

ψ(d(Tu, Tv)) ≤ (α(u, Tu)α(v, Tv) + 1)ψ(d(Tu, Tv)) ≤ F (ψ(d(u, v)), φ(d(u, v))). (3.18)

Therefore the equations (3.16), (3.17) and (3.18) imply that

F (ψ(d(u, v)), φ(d(u, v))) = ψ(d(Tu, Tv))

and so by the properties of functions F , ψ and φ we have

d(u, v) = 0,

thus

u = v.
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4. Consequences

By Theorems 3.1, 3.2 and 3.3 we obtain the following corollaries as an extension of several known results
in the literature.
If we let φ(t) = ψ(t) = t, we get the following three corollaries:

Corollary 4.1. Let (X, d) be a complete metric space and T : X → X be an α-admissible mapping. Suppose
that the following condition is satisfied:

(d(Tx, Ty) + l))α(x,Tx)α(y,Ty) ≤ F (d(x, y)), d(x, y)) + l (4.1)

for all x, y ∈ X and l ≥ 1, where ψ ∈ Ψ, φ ∈ Φ and F ∈ C, Suppose that either,
(a) T is continuous;
or
(b) if {xn} is a sequence in X such that xn → x, α(xn, xn+1) ≥ 1 for all n, then α(x, Tx) ≥ 1.
If there exists x0 ∈ X such that α(x0, Tx0) ≥ 1. Then T has a fixed point.

Corollary 4.2. Let (X, d) be a complete metric space and T : X → X be an α-admissible mapping. Suppose
that the following conditions are satisfied:

(α(x, Tx)α(y, Ty) + 1)d(Tx,Ty) ≤ 2F (d(x,y)),d(x,y)) (4.2)

for all x, y ∈ X and l ≥ 1, where ψ ∈ Ψ, φ ∈ Φ and F ∈ C, Suppose that either,
(a) T is continuous;
or
(b) if {xn} is a sequence in X such that xn → x, α(xn, xn+1) ≥ 1 for all n, then α(x, Tx) ≥ 1.
If there exists x0 ∈ X such that α(x0, Tx0) ≥ 1. Then T has a fixed point.

Corollary 4.3. Let (X, d) be a complete metric space and T : X → X be an α-admissible mapping. Suppose
that the following conditions are satisfied:

α(x, Tx)α(y, Ty)d(Tx, Ty) ≤ F (d(x, y), d(x, y)) (4.3)

for all x, y ∈ X and l ≥ 1, where ψ ∈ Ψ, φ ∈ Φ and F ∈ C, Suppose that either,
(a) T is continuous;
or
(b) if {xn} is a sequence in X such that xn → x, α(xn, xn+1) ≥ 1 for all n, then α(x, Tx) ≥ 1.
If there exists x0 ∈ X such that α(x0, Tx0) ≥ 1. Then T has a fixed point.

If we let β ∈ F, φ(t) = ψ(t) = t and F (s, t) = β(s)s, then the following results of [3] have derived from
our results.

Corollary 4.4 (Theorem 4 in [3]). let (X,m) be a complete metric space and T : X → X be an α-admissible
mapping. Assume that there exists a function β : R+ → [0, 1] such that for any bounded sequence {tn} of
positive reals, β(tn) → 1 implies tn → 0 and

(d(Tx, Ty) + l)α(x,Tx)α(y,Ty) ≤ β(d(x, y))d(x, y) + l (4.4)

for all x, y ∈ X where l ≥ 1. Suppose that either,
(a) T is continuous;
or
(b) if {xn} is a sequence in X such that xn → x, α(xn, xn+1) ≥ 1 for all n, then α(x, Tx) ≥ 1.
If there exists x0 ∈ X such that α(x0, Tx0) ≥ 1. Then T has a fixed point.
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Corollary 4.5 (Theorem 6 in [3]). let (X,m) be a complete metric space and T : X → X be an α-admissible
mapping. Assume that there exists a function β : R+ → [0, 1] such that for any bounded sequence {tn} of
positive reals, β(tn) → 1 implies tn → 0 and

(α(x, Tx)α(y, Ty))d(Tx,Ty) ≤ 2β(d(x,y))d(x,y) (4.5)

for all x, y ∈ X where l ≥ 1. Suppose that either,
(a) T is continuous;
or
(b) if {xn} is a sequence in X such that xn → x, α(xn, xn+1) ≥ 1 for all n, then α(x, Tx) ≥ 1.
If there exists x0 ∈ X such that α(x0, Tx0) ≥ 1. Then T has a fixed point.

Corollary 4.6 (Theorem 8 in [3]). let (X,m) be a complete metric space and T : X → X be an α-admissible
mapping. Assume that there exists a function β : R+ → [0, 1] such that, for any bounded sequence {tn} of
positive reals, β(tn) → 1 implies tn → 0 and

(α(x, Tx)α(y, Ty))d(Tx, Ty) ≤ β(d(x, y))d(x, y) (4.6)

for all x, y ∈ X where l ≥ 1. Suppose that either,
(a) T is continuous;
or
(b) if {xn} is a sequence in X such that xn → x, α(xn, xn+1) ≥ 1 for all n, then α(x, Tx) ≥ 1.
If there exists x0 ∈ X such that α(x0, Tx0) ≥ 1. Then T has a fixed point.
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