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Abstract

In this paper, we define the best proximity point for Prešić type non-self mappings and prove some best
proximity point theorems in complete metric spaces. c⃝2016 All rights reserved.
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1. Introduction

There are several generalizations of the Banach contraction principle. One such generalization is given
by Prešić [5, 6] in 1965. Ćirić and Prešić [1] generalized the Prešić type mappings in 2007 and proved
some fixed point theorems. Now let us assume that A,B be two nonempty subsets of a metric space and
T : A −→ B. Clearly T (A) ∩ A ̸= ∅ is a necessary condition for the existence of a fixed point of T . Now
if T (A) ∩ A = ∅, then to find an element x ∈ A such that d(x, Tx) = d(A,B) which called best proximity
point, is the idea of best proximity point theorems. The existence and convergence of best proximity points
has generalized by several authors such as Prolla[7], Reich[8], Sadiq Basha[9, 10], Vertivel et al.[11] and
Omidvari et al.[2, 3, 4] in many directions. In this paper we prove some best proximity point theorems for
Prešić type non-self mappings in complete metric spaces.

2. Preliminaries

Let A,B be two non-empty subsets of a metric space (X, d). The following notations will be used
throughout this paper:

d(y,A) := inf{d(x, y) : x ∈ A},

d(A,B) = inf{d(x, y) : x ∈ A and y ∈ B},
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A0 = {x ∈ A : d(x, y) = d(A,B) for some y ∈ B},

B0 = {y ∈ B : d(x, y) = d(A,B) for some x ∈ A}.

We recall that x ∈ A is a best proximity point of the non-self mapping T : A −→ B if d(x, Tx) =
dist(A,B). It can be observed that a best proximity reduces to a fixed point, if the underlying mapping is
a self-mapping.

Definition 2.1. [12] Let (A,B) be a pair of nonempty subsets of a metric space X with A ̸= ∅. Then the
pair (A,B) is said to have the weak P-property, if and only if

d(x1, y1) = d(A,B),
d(x2, y2) = d(A,B),

}
=⇒ d(x1, x2) ≤ d(y1, y2),

where x1, x2 ∈ A0 and y1, y2 ∈ B0.

It is clear that, for any nonempty subset A of X, the pair (A,A) has the weak P-property.
Prešić[5, 6] introduced a kind of mappings called Prešić type mappings and proved the following theorem.

Theorem 2.2. [5, 6] Let (X, d) be a complete metric space, k a positive integer and T : Xk −→ X a
mapping the following contractive type condition:

d
(
T (x1, x2, x3, . . . , xk), T (x2, x3, . . . , xk, xk+1)

)
≤

k∑
i=1

qid(xi, xi+1), (2.1)

for every x1, . . . , xk+1 in X, where q1, q2, . . . , qk are non-negative constants such that
∑k

i=1 qi < 1. Then
there exists a uniqe point x in X such that T (x, x, . . . , x) = x. Moreover, if x1, x2, . . . , xk are arbitrary
points in X and for n ∈ N,

xn+k = T (xn, xn+1, . . . , xn+k−1),

then the sequence {xn}∞n=1 is convergent and

limxn = T (limxn, limxn, . . . , limxn).

In 2007, Ćirić and Prešić[1] generalized the Prešić type mappings and proved the following theorem.

Theorem 2.3. [1] Let (X, d) be a complete metric space, k a positive integer and T : Xk −→ X a mapping
the following contractive type condition:

d
(
T (x1, x2, x3, . . . , xk), T (x2, x3, . . . , xk, xk+1)

)
≤ λmax{d(xi, xi+1) : 1 ≤ i ≤ k} (2.2)

where λ ∈ (0, 1) is a constant and x1, . . . , xk+1 are arbitrary elements in X. Then there exists a point x in
X such that T (x, x, . . . , x) = x. Moreover, if x1, x2, . . . , xk are arbitrary points in X and for n ∈ N,

xn+k = T (xn, xn+1, . . . , xn+k−1),

then the sequence {xn}∞n=1 is convergent and

limxn = T (limxn, limxn, . . . , limxn).

If in addition we suppose that on diagonal ∆ ⊂ Xk,

d
(
T (u, . . . , u), T (v, . . . , v)

)
< d(u, v), (2.3)

holds for all u, v ∈ X, with u ̸= v, then x is the unique point in X with T (x, x, . . . , x) = x.
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3. Main Result

We first define a new kind of the best proximity point.

Definition 3.1. Let A and B be two non-empty subsets of a metric space (X, d). Let k be a positive integer
and T : Ak −→ B a non-self mapping. x ∈ A is said to be a best proximity point of T if,

d
(
x, T (x, . . . , x)

)
= d(A,B).

Theorem 3.2. Let A and B be two non-empty closed subsets of a complete metric space (X, d) such that
A0 ̸= ∅ and (A,B) has the weak P -property. Let k be a positive integer and T : Ak −→ B a non-self
mapping satisfies the following condition:

(a) T (Ak
0) ⊆ B0.

(b) There exists λ ∈ (0, 1) such that

d
(
T (x1, x2, . . . , xk), T (x2, . . . , xk, xk+1)

)
≤ λmax{d(xi, xi+1) : 1 ≤ i ≤ k}, (3.1)

where x1, x2, . . . , xk+1 are arbitrary elements in A.

Then T has a best proximity point in A. Moreover, if on diagonal ∆ ⊂ Ak,

d
(
T (u, . . . , u), T (v, . . . , v)

)
< d(u, v), (3.2)

holds for all u, v ∈ A, with u ̸= v, then T has an unique best proximity point in A.

Proof. Choose (x1, x2, . . . , xk) ∈ Ak
0. Since T (Ak

0) ⊆ B0, there exists xk+1 ∈ A0 such that

d
(
xk+1, T (x1, x2, . . . , xk)

)
= d(A,B).

Again since (x2, . . . , xk, xk+1) ∈ Ak
0, there exists xk+2 ∈ A0 such that

d
(
xk+2, T (x1, . . . , xk, xk+1)

)
= d(A,B).

Continuing this process, we can find a sequence {xn} in A0 such that

d
(
xn+k, T (xn, xn+1, . . . , xn+k−1)

)
= d(A,B) for all n ∈ N. (3.3)

We will prove the convergence of sequence {xn} in A. (A,B) satisfies the weak P -property, therefore from
(3.3) we obtain for all n ∈ N,

d(xn+k, xn+k+1) ≤ d
(
T (xn, xn+1, . . . , xn+k−1), T (xn+1, . . . , xn+k−1, xn+k)

)
. (3.4)

Put αn = d(xn, xn+1). We will prove by induction the following inequality;

αn ≤ Kθn for all n ∈ N, (3.5)

where θ = λ
1
k and K = max{α1

θ
,
α2

θ2
, . . . ,

αk

θk
}.

Obviously, 0 ≤ θ < 1 and (3.5) is true for n = 1, ..., k. Now let

αn ≤ Kθn, αn+1 ≤ Kθn+1, . . . , αn+k−1 ≤ Kθn+k−1,
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be the induction hypotheses. Then by the definition of T and the induction hypotheses and using (3.4), we
have

αn+k = d(xn+k, xn+k+1)

≤ d
(
T (xn, xn+1, . . . , xn+k−1), T (xn+1, . . . , xn+k−1, xn+k)

)
≤ λmax{αi : i = n, . . . , n+ k − 1}

≤ λmax{Kθi : i = n, . . . , n+ k − 1}

= λKθn = Kθn+k,

(3.6)

and this complete the inductive proof. Now let m,n ∈ N such that m ≥ n. By using (3.5), we receive that

d(xn, xm) ≤
∑m−1

i=n d(xi, xi+1)

≤
∑m−1

i=n Kθi

≤ Kθn
∑∞

i=1 θ
i

=
Kθn

1− θ
.

Therefore {xn} is a Cauchy sequence in A. Since X is a complete metric space and A is a closed subset of
X, there exists x ∈ A such that limn→∞ xn = x. Then for any n ∈ N, we have

d
(
x, T (x, . . . , x)

)
≤ d(x, xn+k) + d

(
xn+k, T (xn, xn+1, . . . , xn+k−1)

)
+ d

(
T (xn, xn+1, . . . , xn+k−1), T (x, . . . , x)

)
≤ d(x, xn+k) + d(A,B) + d

(
T (x, . . . , x, x), T (x, . . . , x, xn)

)
+ d

(
T (x, . . . , x, xn), T (x, . . . , xn, xn+1)

)
+ . . .

+ d
(
T (x, xn, xn+1, . . . , xn+k−2), T (xn, xn+1, . . . , xn+k−1)

)
≤ d(x, xn+k) + d(A,B) + λd(x, xn)

+ λmax{d(x, xn), d(xn, xn+1)}+ . . .+ λmax{d(x, xn), d(xn, xn+1), . . . , d(xn+k−2, xn+k−1)}.

Letting n → ∞ in the above inequality, we obtain that d
(
x, T (x, . . . , x)

)
= d(A,B). Also, we received that

d
(
limxn, T (limxn, . . . , limxn)

)
= d(A,B).

Now suppose (3.2) holds. we show that x is unique. Let x∗ ∈ A be a best proximity point of T such that
x ̸= x∗. Since (A,B) has the weak P -property and (3.2) holds,

d(x, x∗) ≤ d
(
T (x, . . . , x), T (x∗, . . . , x∗)

)
< d(x, x∗),

which is a contradiction. Hence x is an unique element in A and this completes the proof of theorem.

Remark 3.3. Theorem 3.2 is a generalization of Theorem 2.3 if A = B = X.

The following result is an immediate consequence of Theorem 3.2.

Corollary 3.4. Let A and B be two non-empty closed subsets of a complete metric space (X, d) such that
A0 ̸= ∅ and (A,B) has the weak P -property. Let k be a positive integer and T : Ak −→ B a non-self
mapping satisfies the following condition:

(a) T (Ak
0) ⊆ B0.
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(b) There exist non-negative constants q1, q2, . . . , qk such that
∑k

i=1 qi < 1 and

d
(
T (x1, x2, x3, . . . , xk), T (x2, x3, . . . , xk, xk+1)

)
≤

k∑
i=1

qid(xi, xi+1),

where x1, x2, . . . , xk+1 are arbitrary elements in A.

Then T has a best proximity point in A. Moreover, if on diagonal ∆ ⊂ Ak,

d
(
T (u, . . . , u), T (v, . . . , v)

)
< d(u, v),

holds for all u, v ∈ A, with u ̸= v, then T has an unique best proximity point in A.

Proof. Put λ =
∑k

i=1 qi. Obviously T satisfies in (3.1) and this completes the proof of corollary.

Example 3.5. Let X = R with the usual metric. Given A = {−2, 2}, B = {−1, 1} and T : A2 −→ B by

T (x, y) =


x+ y

4
, x = y,

x+ y

4
+ 1, x ̸= y,

It is clear that, for any λ ∈ (
1

2
, 1), the non-self mapping T satisfies in the conditions of Theorem 3.2 and

d
(
− 2, T (−2,−2)

)
= d

(
2, T (2, 2)

)
= d(A,B).
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[1] L. B. Ćirić, S. B. Prešić, On Prešić type generalization of the Banach contraction mapping principle, Acta Math.
Univ. Comenian., 76 (2007), 143–147. 1, 2, 2.3

[2] M. Omidvari, S. M. Vaezpour and R. Saadati, Best proximity point theorems for F -contractive non-self mappings,
Miskolc Math. Notes , 15 (2014), 615–623. 1

[3] M. Omidvari, S. M. Vaezpour, R. Saadati, S. J. Lee Best proximity point theorems with Suzuki distances, J.
Inequal. Appl., 2015 (2015), 27–44. 1

[4] M. Omidvari, S. M. Vaezpour, A best proximity point theorem in metric spaces with generalized distance, J.
Math. Comput. Sci., 13 (2014), 336–342. 1
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