

Communications in Nonlinear Analysis

Journal Homepage: www.vonneumann-publishing.com/cna

Best Proximity Point for Prešić Type Mappings on Metric Spaces

Mehdi Omidvari

Department of Mathematics, Abarkouh Branch, Islamic Azad University, Abarkouh, Iran.

Abstract

In this paper, we define the best proximity point for Prešić type non-self mappings and prove some best proximity point theorems in complete metric spaces. ©2016 All rights reserved.

Keywords: Best proximity point, weak *P*-property, Prešić type mappings. 2010 MSC: 47H10, 54H25, 90C26.

1. Introduction

There are several generalizations of the Banach contraction principle. One such generalization is given by Prešić [5, 6] in 1965. Ćirić and Prešić [1] generalized the Prešić type mappings in 2007 and proved some fixed point theorems. Now let us assume that A, B be two nonempty subsets of a metric space and $T: A \longrightarrow B$. Clearly $T(A) \cap A \neq \emptyset$ is a necessary condition for the existence of a fixed point of T. Now if $T(A) \cap A = \emptyset$, then to find an element $x \in A$ such that d(x, Tx) = d(A, B) which called best proximity point, is the idea of best proximity point theorems. The existence and convergence of best proximity points has generalized by several authors such as Prolla[7], Reich[8], Sadiq Basha[9, 10], Vertivel *et al.*[11] and Omidvari *et al.*[2, 3, 4] in many directions. In this paper we prove some best proximity point theorems for Prešić type non-self mappings in complete metric spaces.

2. Preliminaries

Let A, B be two non-empty subsets of a metric space (X, d). The following notations will be used throughout this paper:

 $d(y,A) := \inf\{d(x,y) : x \in A\},\$

 $d(A,B) = \inf\{d(x,y) : x \in A \text{ and } y \in B\},\$

Received 2016-03-06

Email address: mehdi.omidvari@gmail.com (Mehdi Omidvari)

 $A_0 = \{x \in A : d(x, y) = d(A, B) \text{ for some } y \in B\},\$ $B_0 = \{y \in B : d(x, y) = d(A, B) \text{ for some } x \in A\}.$

We recall that $x \in A$ is a best proximity point of the non-self mapping $T : A \longrightarrow B$ if d(x, Tx) = dist(A, B). It can be observed that a best proximity reduces to a fixed point, if the underlying mapping is a self-mapping.

Definition 2.1. [12] Let (A, B) be a pair of nonempty subsets of a metric space X with $A \neq \emptyset$. Then the pair (A, B) is said to have the weak P-property, if and only if

$$\frac{d(x_1, y_1) = d(A, B),}{d(x_2, y_2) = d(A, B),} \} \Longrightarrow d(x_1, x_2) \le d(y_1, y_2),$$

where $x_1, x_2 \in A_0$ and $y_1, y_2 \in B_0$.

It is clear that, for any nonempty subset A of X, the pair (A, A) has the weak P-property. Prešić [5, 6] introduced a kind of mappings called Prešić type mappings and proved the following theorem.

Theorem 2.2. [5, 6] Let (X, d) be a complete metric space, k a positive integer and $T : X^k \longrightarrow X$ a mapping the following contractive type condition:

$$d(T(x_1, x_2, x_3, \dots, x_k), T(x_2, x_3, \dots, x_k, x_{k+1})) \le \sum_{i=1}^k q_i d(x_i, x_{i+1}),$$
(2.1)

for every x_1, \ldots, x_{k+1} in X, where q_1, q_2, \ldots, q_k are non-negative constants such that $\sum_{i=1}^k q_i < 1$. Then there exists a unique point x in X such that $T(x, x, \ldots, x) = x$. Moreover, if x_1, x_2, \ldots, x_k are arbitrary points in X and for $n \in \mathbb{N}$,

$$x_{n+k} = T(x_n, x_{n+1}, \dots, x_{n+k-1}),$$

then the sequence $\{x_n\}_{n=1}^{\infty}$ is convergent and

$$\lim x_n = T(\lim x_n, \lim x_n, \dots, \lim x_n).$$

In 2007, Ćirić and Prešić[1] generalized the Prešić type mappings and proved the following theorem.

Theorem 2.3. [1] Let (X, d) be a complete metric space, k a positive integer and $T: X^k \longrightarrow X$ a mapping the following contractive type condition:

$$d(T(x_1, x_2, x_3, \dots, x_k), T(x_2, x_3, \dots, x_k, x_{k+1})) \le \lambda \max\{d(x_i, x_{i+1}) : 1 \le i \le k\}$$
(2.2)

where $\lambda \in (0,1)$ is a constant and x_1, \ldots, x_{k+1} are arbitrary elements in X. Then there exists a point x in X such that $T(x, x, \ldots, x) = x$. Moreover, if x_1, x_2, \ldots, x_k are arbitrary points in X and for $n \in \mathbb{N}$,

 $x_{n+k} = T(x_n, x_{n+1}, \dots, x_{n+k-1}),$

then the sequence $\{x_n\}_{n=1}^{\infty}$ is convergent and

 $\lim x_n = T(\lim x_n, \lim x_n, \dots, \lim x_n).$

If in addition we suppose that on diagonal $\Delta \subset X^k$,

$$d(T(u,\ldots,u),T(v,\ldots,v)) < d(u,v),$$
(2.3)

holds for all $u, v \in X$, with $u \neq v$, then x is the unique point in X with T(x, x, ..., x) = x.

3. Main Result

We first define a new kind of the best proximity point.

Definition 3.1. Let A and B be two non-empty subsets of a metric space (X, d). Let k be a positive integer and $T: A^k \longrightarrow B$ a non-self mapping. $x \in A$ is said to be a best proximity point of T if,

$$d(x, T(x, \dots, x)) = d(A, B).$$

Theorem 3.2. Let A and B be two non-empty closed subsets of a complete metric space (X,d) such that $A_0 \neq \emptyset$ and (A,B) has the weak P-property. Let k be a positive integer and $T : A^k \longrightarrow B$ a non-self mapping satisfies the following condition:

- (a) $T(A_0^k) \subseteq B_0$.
- (b) There exists $\lambda \in (0,1)$ such that

$$d(T(x_1, x_2, \dots, x_k), T(x_2, \dots, x_k, x_{k+1})) \le \lambda \max\{d(x_i, x_{i+1}) : 1 \le i \le k\},$$
(3.1)

where $x_1, x_2, \ldots, x_{k+1}$ are arbitrary elements in A.

Then T has a best proximity point in A. Moreover, if on diagonal $\Delta \subset A^k$,

$$d(T(u,\ldots,u),T(v,\ldots,v)) < d(u,v),$$

$$(3.2)$$

holds for all $u, v \in A$, with $u \neq v$, then T has an unique best proximity point in A.

Proof. Choose $(x_1, x_2, \ldots, x_k) \in A_0^k$. Since $T(A_0^k) \subseteq B_0$, there exists $x_{k+1} \in A_0$ such that

$$d(x_{k+1}, T(x_1, x_2, \dots, x_k)) = d(A, B).$$

Again since $(x_2, \ldots, x_k, x_{k+1}) \in A_0^k$, there exists $x_{k+2} \in A_0$ such that

$$d(x_{k+2}, T(x_1, \dots, x_k, x_{k+1})) = d(A, B).$$

Continuing this process, we can find a sequence $\{x_n\}$ in A_0 such that

$$d(x_{n+k}, T(x_n, x_{n+1}, \dots, x_{n+k-1})) = d(A, B) \quad for \ all \ n \in \mathbb{N}.$$
(3.3)

We will prove the convergence of sequence $\{x_n\}$ in A. (A, B) satisfies the weak P-property, therefore from (3.3) we obtain for all $n \in \mathbb{N}$,

$$d(x_{n+k}, x_{n+k+1}) \le d(T(x_n, x_{n+1}, \dots, x_{n+k-1}), T(x_{n+1}, \dots, x_{n+k-1}, x_{n+k})).$$
(3.4)

Put $\alpha_n = d(x_n, x_{n+1})$. We will prove by induction the following inequality;

$$\alpha_n \le K\theta^n \quad for \ all \ n \in \mathbb{N},\tag{3.5}$$

where $\theta = \lambda^{\frac{1}{k}}$ and $K = \max\{\frac{\alpha_1}{\theta}, \frac{\alpha_2}{\theta^2}, \dots, \frac{\alpha_k}{\theta^k}\}$. Obviously, $0 \le \theta < 1$ and (3.5) is true for $n = 1, \dots, k$. Now let

$$\alpha_n \le K\theta^n, \alpha_{n+1} \le K\theta^{n+1}, \dots, \alpha_{n+k-1} \le K\theta^{n+k-1},$$

be the induction hypotheses. Then by the definition of T and the induction hypotheses and using (3.4), we have $\alpha_{n+k} = d(x_{n+k}, x_{n+k+1})$

$$d(x_{n+k}, x_{n+k+1})$$

$$\leq d(T(x_n, x_{n+1}, \dots, x_{n+k-1}), T(x_{n+1}, \dots, x_{n+k-1}, x_{n+k}))$$

$$\leq \lambda \max\{\alpha_i : i = n, \dots, n+k-1\}$$

$$\leq \lambda \max\{K\theta^i : i = n, \dots, n+k-1\}$$

$$= \lambda K\theta^n = K\theta^{n+k},$$
(3.6)

and this complete the inductive proof. Now let $m, n \in \mathbb{N}$ such that $m \ge n$. By using (3.5), we receive that

$$d(x_n, x_m) \leq \sum_{i=n}^{m-1} d(x_i, x_{i+1})$$
$$\leq \sum_{i=n}^{m-1} K \theta^i$$
$$\leq K \theta^n \sum_{i=1}^{\infty} \theta^i$$
$$= \frac{K \theta^n}{1 - \theta}.$$

Therefore $\{x_n\}$ is a Cauchy sequence in A. Since X is a complete metric space and A is a closed subset of X, there exists $x \in A$ such that $\lim_{n\to\infty} x_n = x$. Then for any $n \in \mathbb{N}$, we have

$$\begin{aligned} d\big(x, T(x, \dots, x)\big) &\leq d(x, x_{n+k}) + d\big(x_{n+k}, T(x_n, x_{n+1}, \dots, x_{n+k-1})\big) + d\big(T(x_n, x_{n+1}, \dots, x_{n+k-1}), T(x, \dots, x)\big) \\ &\leq d(x, x_{n+k}) + d(A, B) + d\big(T(x, \dots, x, x), T(x, \dots, x, x_n)\big) \\ &+ d\big(T(x, \dots, x, x_n), T(x, \dots, x_n, x_{n+1})\big) + \dots \\ &+ d\big(T(x, x_n, x_{n+1}, \dots, x_{n+k-2}), T(x_n, x_{n+1}, \dots, x_{n+k-1})\big) \\ &\leq d(x, x_{n+k}) + d(A, B) + \lambda d(x, x_n) \\ &+ \lambda \max\{d(x, x_n), d(x_n, x_{n+1})\} + \dots + \lambda \max\{d(x, x_n), d(x_n, x_{n+1}), \dots, d(x_{n+k-2}, x_{n+k-1})\} \end{aligned}$$

Letting $n \to \infty$ in the above inequality, we obtain that $d(x, T(x, \ldots, x)) = d(A, B)$. Also, we received that

$$d(\lim x_n, T(\lim x_n, \dots, \lim x_n)) = d(A, B).$$

Now suppose (3.2) holds. we show that x is unique. Let $x^* \in A$ be a best proximity point of T such that $x \neq x^*$. Since (A, B) has the weak P-property and (3.2) holds,

$$d(x, x^*) \le d(T(x, \dots, x), T(x^*, \dots, x^*)) < d(x, x^*),$$

which is a contradiction. Hence x is an unique element in A and this completes the proof of theorem. \Box

Remark 3.3. Theorem 3.2 is a generalization of Theorem 2.3 if A = B = X.

The following result is an immediate consequence of Theorem 3.2.

Corollary 3.4. Let A and B be two non-empty closed subsets of a complete metric space (X, d) such that $A_0 \neq \emptyset$ and (A, B) has the weak P-property. Let k be a positive integer and $T : A^k \longrightarrow B$ a non-self mapping satisfies the following condition:

(a) $T(A_0^k) \subseteq B_0$.

(b) There exist non-negative constants q_1, q_2, \ldots, q_k such that $\sum_{i=1}^k q_i < 1$ and

$$d(T(x_1, x_2, x_3, \dots, x_k), T(x_2, x_3, \dots, x_k, x_{k+1})) \le \sum_{i=1}^k q_i d(x_i, x_{i+1}),$$

where $x_1, x_2, \ldots, x_{k+1}$ are arbitrary elements in A.

Then T has a best proximity point in A. Moreover, if on diagonal $\Delta \subset A^k$,

 $d(T(u,\ldots,u),T(v,\ldots,v)) < d(u,v),$

holds for all $u, v \in A$, with $u \neq v$, then T has an unique best proximity point in A.

Proof. Put $\lambda = \sum_{i=1}^{k} q_i$. Obviously *T* satisfies in (3.1) and this completes the proof of corollary. \Box **Example 3.5.** Let $X = \mathbb{R}$ with the usual metric. Given $A = \{-2, 2\}, B = \{-1, 1\}$ and $T : A^2 \longrightarrow B$ by

$$T(x,y) = \begin{cases} \frac{x+y}{4}, & x = y, \\ \frac{x+y}{4} + 1, & x \neq y, \end{cases}$$

It is clear that, for any $\lambda \in (\frac{1}{2}, 1)$, the non-self mapping T satisfies in the conditions of Theorem 3.2 and d(-2, T(-2, -2)) = d(2, T(2, 2)) = d(A, B).

4. Acknowledgement

The author would like to thanks to Islamic Azad University, Abarkouh Branch, to support this research.

References

- L. B. Ćirić, S. B. Prešić, On Prešić type generalization of the Banach contraction mapping principle, Acta Math. Univ. Comenian., 76 (2007), 143–147. 1, 2, 2.3
- M. Omidvari, S. M. Vaezpour and R. Saadati, Best proximity point theorems for F-contractive non-self mappings, Miskolc Math. Notes, 15 (2014), 615–623.
- [3] M. Omidvari, S. M. Vaezpour, R. Saadati, S. J. Lee Best proximity point theorems with Suzuki distances, J. Inequal. Appl., 2015 (2015), 27–44. 1
- [4] M. Omidvari, S. M. Vaezpour, A best proximity point theorem in metric spaces with generalized distance, J. Math. Comput. Sci., 13 (2014), 336–342.
- [5] S. B. Prešić, Sur la convergence des suites, Comptes Rendus de lAcad. des Sci. de Paris, 260 (1965), 3828–3830.
 1, 2, 2.2
- [6] S. B. Prešić, Sur une classe dinéquations aux différences finite et sur la convergence de certaines suites, Publ. Inst. Math., (Beograd), 5 (1965), 75–78. 1, 2, 2.2
- [7] J. B. Prolla, Fixed point theorems for set valued mappings and existence of best approximations, Numer. Funct. Anal. Optim., 5 (1982), 449–455.
- [8] S. Reich, Approximate selections, best approximations, fixed points and invariant sets, J. Math. Anal. Appl., 62 (1978), 104–113.
- [9] S. Sadiq Basha, Best proximity point theorems generalizing the contraction principle, Nonlinear Anal., 74 (2011), 5844–5850.
- [10] S. Sadiq Basha, Best proximity point theorems, J. Approx. Theory, 163 (2011), 1772–1781. 1
- [11] V. Vetrivel, P. Veeramani and P. Bhattacharyya, Some extensions of Fans best approximation theorem, Numer. Funct. Anal. Optim. 13 (1992), 397–402.
- [12] J. Zhang, Y. Su, Q. Cheng, A note on "A best proximity point theorem for Geraghty-contractions", Fixed Point Theory Appl., 2013 (2013), 99–102. 2.1