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1. Introduction

Many works have been published on the existence of solutions for different singular fractional differential
systems (see for example, [1], [6] and [7]-[9]). In 2012, the existence of positive solution for the singular
equation D%u(t) + f(t,u(t)) = 0 with boundary conditions u(1) = 0 and [I?~%u(t)];_, = 0 investigated,
where t € [0,1], @ € (1,2) and D® is the Riemann-Liouville fractional derivative ([3]). In 2013, the existence
of positive solution for the system D%u;(t) + fi(t,u1(t),u2(t)) = 0 (i = 1,2) with boundary conditions
u1(0) = u}(0) = 0, us(1) = fol w1 (t)dn(t), uz(0) = u4H(0) = 0 and us(1) = fol ug(t)dn(t) investigated, where
t€[0,1], @ € (2,3], f1, f2 € C([0,1] x [0,00) x [0,00),R), D% is the Riemann-Liouville fractional derivative
and fol u;(t)dn(t) denotes the Riemann-Stieltjes integral ([10]). In 2014, the existence of solution for the
problem Du(t)+ f(t,u(t)) = 0 with boundary conditions /(0) = ... = (1) = 0 and u(1) = fol u(s)dpu(s)
investigated, where n > 2, a € (n — 1,n), p is bounded variation, f may have singularity at ¢ = 0 and
fol du(s) <1 ([11]). By using the main idea of the above papers, we investigate the existence of solution for
the singular system

Da(t) + fr(t, x(t),y(t)) = 0,
(1.1)
D2y(t) + fa(t, x(t), y(t)) = 0,
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with boundary conditions z(0) = y(0) = 0, () (0) = 4y (0) = 0 for i = 2,. 1,z(1) =
and y(1) = [IP2(h2(t)y(t))]i=1, where n > 3, a1, a9 € (n,n+1] p1,p2 > 1, f1 f2 c((o,
f1, f2 are singular at t = 0, hq,hy € L0, 1] are non-negative and [Ipﬂ(h (t)]e=1 € [
f1, f2 satisfy the local Caratheodory condition on (0, 1] x (0,00) x (0, 00).

We say that f satisfies the local Caratheodory condition on [0,1] x (0,00) x (0,00) and denote it by
f € Car([0,1] x (0,00) x (0,00)), whenever the function f(.,z,y) : [0,1] — R is measurable for all
(z,y) € (0,00) x (0,00), the function f(¢,.,.) : (0,00) x (0,00) — R is continuous for almost all ¢ € [0, 1] and
for each compact subset & of (0, 00) x (0, 00) there exists a function o, € L[0, 1] such that |f(¢,z,y)| < px(t)
for almost all ¢ € [0,1] and all (z,y) € k.

[Pt (ha ()2(1))]e=1
1] %10, 00) x [0, 00)),
,3) for j = 1,2 and

Definition 1.1 ([5]). The Riemann-Liouville integral of order p for a function f : (0,00) — R is defined by

PH) = g [ 0= s

whenever the right-hand side is pointwise defined on (0, c0).

Definition 1.2 ([5]). The Caputo fractional derivative of order o« > 0 for a function f : (a,00) — R is
defined by

cpas(py — L A C)
D0 = i, e
where n = [a] + 1.

One can check that fg(t—s)o‘*lsﬁds = B(B+1,a)t* B forall 8 > 0 and a > —1, where B(, o) = Flf?ogi(ﬁlg))
([9])-

Suppose that X is a Banach space and mx denotes the collection of all bounded subset of X.

Definition 1.3 ([4]). A function p: myx — [0,00) is called a measure of non-compactness, if it satisfies the
following conditions:

(1) p(Q) =0 if and only if @ is relatively compact.
(2) Q1) < u(Q2) whenever Q1 C Q2,

(3) ulconv(Q)) = u(Q).

(4) p(@1U Q2) max{u(Q1), u(Q2)}-

(5) m@

5 1+ Q2) < pu(Q1) + u(Q2).
(6) Q) = |\p(Q) for all scalar A,

for Q € mx.

11(
p(con
(
1(
p(A

The Kuratowski measure of non-compactness of @ is denoted by K(Q) and defined by
K(Q)=inf{e>0:Q C USi and diam(S;) <efori=1,...,n},

=1

([4]). If Q is unbounded, then put K(Q) = oo and K(Q) = 0 whenever @ = § ([4]). Note that,
K(Q) < diam(Q) for all Q € mx ([4]).

Lemma 1.4 ([9]). Suppose that 0 <n —1<a <n and x € C[0,1] N L'[0,1]. Then, we have

I°D%(t) = +chtz

for some real constants cg,...,cp_1.
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Theorem 1.5 ([2]). Let C be a nonempty, bounded, closed and convex subset of a Banach space X, K
the Kuratowski measure of non-compactness on X and T : C'— C a continuous operator. If there exists a
constant ¢ € [0,1) such that K(T(Q)) < c¢.K(Q) for all Q C C, then T has a fized point.

Now, we provide our first key result.
Lemma 1.6. Let y € L'[0,1], p > 1 and o > 3. Then z(t) = fol G(t,s)y(s)ds is a solution for the
problem D®x(t) 4+ y(t) = 0 with boundary conditions z(0) = 2 (0) = --- = z»=D(0) = 0 and z(1) =
[IP(h(t)x(t))]t=1, where h € L1[0,1],
t 1
Glt,s) = Gi(t,s) + / (1= 0P h(t)GA (¢, s)dr,
1(p) Jo

Gi(t, s) — W henever 0 < ¢ < s < 1, Gi(t,s) = U= =90 penever 0 < s < ¢ < 1 and

F(a) INEY)
w(p) — [ (1 — )P~ h(t)dt.
Proof. By using Lemma 1.4, we have z(t) = —ﬁ fg(t — 8) ly(s)ds + co + c1t + ... + et for some
real constants. Since x(0) = x(i)(O) =0 for i > 2, we get co =cy=c3=...=cyp =0. Thus, z(t) =
ﬁfg(f —5)* Ly(s)ds + eit. Since [IP(h(t)z(t))]i=1 = fO s)P~1h(s)ds, by using the boundary
condition at ¢ = 1 we obtain

—L 1 — ) Ly (s)ds c—L ' — 8P 1h(s)ds
e [ a9 y(>d+1—F(p)/0<1 Y h(s)d

and so ¢; ﬁ fl(l — s)P7Lh(s)z(s)ds + ﬁ fol(l — 5)* Ly(s)ds. Thus,

t 1 1
x(t) = —1/ (t — 5)* ty(s)ds + F(ta)/o (1—s)*y(s)ds + F(tp)/o (1 —s)P1h(s)ds

/ Gr(t, 8)y(s)ds + H{IP(h(t)2(t))]ies,
which implies
[P (h(t)(t)) / / DP-IR ()G (1, s)y(s)dsdt
_ Pl P T _1dt.
+W) / (1= P RO (B (t) et
Since [P(h(H)a(t)limr = 2117 (h(0)2(t)imdt, we got

1 ——1 —t)pt p x ——1 1 —¢)p~t 1 s)y(s)ds

/O (1= g5 (L= 07 O (D0 mrdt = s /O (1 -t~ h(t) /O G1(t, s)y(s)dsdt.
Hence,

P _11_17—1 —711—1’_1 ' s)y(s)ds

PO (1= s [ 0=ty e = 5 [ @ =0h) [ G opispasar

fo (1-t)P~ lh fo G1(t,s)y(s)ds dt
D(p)(1— 57 Jo (1—t)P~th(t)dt)

1 P ! s)y(s)ds
/ G1(t,s)y(s)ds + tp(—1) lhl(t) Jo Gi(t,s)y(s)ds dt
— [ (1 = t)p=1th(t)dt

and so [IP(h(t)x(t))]=1 =

. This implies that

1
- / G(t, s)y(s)ds,
0

where G(t,5) = Gi(t,5) + L5 [o (1 = )P h() G (¢, s)dt, 0
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By using some calculations, one can see that G(t,s) > 0 and G(t, s) < (Hi)_a{)l (14+A(p)) for all t, s € [0, 1],
where A(p) fo (1 — )P~ Lh(t)dt.

Now for each natural number n, consider the map f;,(t,z,y) = fi(t,xn(2),xn(y)), where x,(z) = =
whenever x > % and xp(z) = % whenever x < % Here, we first investigate the regular system

Dy + fl,n(taxvy) = 07

(1.2)

DaQy + f2,n(t7$7y) = 07
with same boundary conditions in the problem (1). For each n > 1 and ¢ = 1,2, consider the map
Thi(z,y)( fo a;(t,8) fni(s,x(s),y(s))ds, where Gy, (t,s) is the Green function in Lemma 1.6 which

replaced « and p by a; and p;. Put

Tn(,y)(t) = (Tna (2, ) (1), Tn2(2, y)(1))

and

1T (2, y) ()|« = max{Tn1 (2, y)(t), Tn2(z,y)(t)}.
Since f1, fo € Car([0,1] x R?), it is easy to check that f, 1, fno € Car([0,1] x R?) for all n and so there
exist @1, € LY[0,1] such that |f, (¢, z(t),y(t))] < ¢i(t) for almost all t € [0,1], n > 1 and i = 1,2. Now,
consider the set C' = {(,y) € C[0,1] x C[0,1] : [[(z,y)ll« < [l¢ll%}, where [[¢][5, = max{[[¢1]loo; [P2lloc }-
Note that, C' is closed, bounded and convex.

Lemma 1.7. For each n > 1, T,, maps C into C and is equi-continuous on each bounded subset of

C (0,1, R) x ([0, 1, R).
Proof. Let n > 1 and (x,y) € C be given. First, we show that 7,, maps C into C. Note that,

(] _ gyl 1
Taten® < [ S0 L [ o i s, ols). (9,
for i = 1,2. Hence,
1] _ gai-l 1
Tn,i(x,y)(t)g/o (11“(041-)—1) (1+H(;i)/0 (1= P~ Uha(t)dt) i (s)ds, (1.3)

for i = 1,2. Since [I7i(h;(t))]i=1 € [0, 3), ﬁ fol(l — t)Pi~Ih;(t)dt € [0,3). Also, we have

1 /1 L /1 L
1 — )P~ Yh;(t)dt < 1— )P~ h(t)dt.
Do) Jo (1707 OES g, (07O
Thus, ﬁ fol(l — t)Pi~lth(t)dt € [0,1) and so 1 — %pi) fo (1 —t)Pi=1th;(t)dt) € [0, 3). This implies that

1
1(pi)

[ -t tnar = Jo (=t ha(t)dt
’ L'(p; —fo (1 — t)Pi=Lth(t)dt

(1 —t)Pi=th(t)dt
_ Tt b LR
1-— W fo (1 — t)Pi—Lth,(t)dt

and so 1 + = fo (1 —t)Pi=th(t)dt < 2. By using this inequality and (1.3), we get

2 ! o;—1, 2H()07/”00 ! ;—
Tni(z,y)(t) < I‘(0[2_1)/0 (1—y9) 1(pz(s)ds < F(Ozz—l)/o (1—29) Lds

2 *
= m”%‘”oo < gillo < llelln
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and so [|Tn(z,9)|l« < |l¢ll%. Now, we show that T is equi-continuous on each bounded subset F' of
C([0,1],R) x C([0,1],R). Let {(xg,yr)}3>; be a bounded sequence in F and 0 < ¢ < to < 1. Then,
we have

Tl ue)(t2) = Tonlon) ()] € sl [ (2 =9 = (1= 977

to
X fui(s 2k(s), yk(s))ds + / (ts — )% f 4(5, 1 (5), uk(5))]ds

t1

1 _ s a;—1
=) [T b Gl ) (o)) s
1

1
S Ty [/0 (t2 = )77 = (01 = )" epils)ds + (12 = )™ il

+ <t2—t1>|m||1<(1+Ai<p@->>,

T O(i)
where for i = 1,2, Ay(pi) = 7 Jo (1 = )P ha(t)dt, Gai(s) = b5 o (1= P hi(£)Ga(t, s)dt and
Gh,i(t,s) is defined as G1(t,s) by replacing «; instead a. Let 0 < e < 1,0 <t; <ty <land 0 <s <.
Choose 6 > 0 such that t; —ta < & implies (tz — 8)* ™1 — (t; — 5)% ! < efori = 1,2. Let k > 1 and
0 <t; <to <1 with ¢t; — t2 < min{J, e} be given. Then, we have

T (hs ) (t2) — Tin(@rs ) (1) ] < €lpi]1( + Ai(pi))

3
I(ev)
and so lim¢, ¢, || T (2k, yi ) (t2) — Tn(xk, yx ) (t1)]|« = 0. Also, we have

)alfl

ITaten, ) O < max{ [ G

llo1ll1(14+ A1(p1)) o2l (1 + Az(p2))}
F(Oq - 1) ’ F(OQ - 1) ’

1 — 3 as—1
1+ GaaleDa(s)ds, [ G

| T, —1) (LT G22(9)ea(s)ds}

< max{

Let {(xk, yx)}72, be sequence in F' and (z,yx) — (x,y). Hence, z, = =, yr, — y. Note that,

1
1Tk, yi)(E) = Tz, ) (0[] < max{/o Gon (b, 8)[f1n(s,k(5), yk(s)) = frn(s,2(5), y(s))|ds,

1
/O Gay(t;8)| fan(s, 2r(s), yk(s)) — fan(s, x(s),y(s))|ds}

< 2|l ( (1+An)),

1
Ia, — 1)
where v, = min{ai, as} and Ay = max{A;(p1), A2(p2)}. Since

|[fin(s,2k(5), yk(s)) = fin(s,2(s),y(s))] =0,

for i = 1, 2, by using the Lebesgue dominated convergence Theorem, we conclude that T;, is equi-continuous
on F for all n. O

2. Main Results

Theorem 2.1. Let n > 3, f1, f2 € Car([0,1] x (0,00)?), al,ozg € (n,n+1], p1,p2 > 1, h1,he € LY0,1] be
nonnegative functions and (1Pt (ha(t))]e=1, [IP* (h1(t))]i=1 € [0, 3). Suppose that there exist g1, go € L*([0,1])

such that |g||; < 2= Y for almost all t € [0,1] and i = 1,2. Assume that K(fi(t,Q)) < ¢:(t)K(Q) for all
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bounded subset Q of C[0,1] x C[0,1] and i = 1,2, where K is the Kuratowski measure of non-compactness.
Then, for each n > 1 the system

D™y + fl,n(tawvy) = 07

DaQy + f2,n(tamay) = 07
with boundary conditions x(0) = y(0) = 0, 2 (0) = yD(0) =0 fori=2,...,n—1, x(1) = [IP* (h (t)z(t))]s=1
and y(1) = [IP2(ha(t)y(t))]t=1 has a solution.

Proof. Let Q be a bounded subset C[0,1] x C[0,1], n € Nand i = 1 or 2. Choose bounded sets F, S C C0,1]
such that Q = (F,S). Put Fy :={z € F : > 1} and S := {zx € S:2 > 1}. Then, we have

K(fi,n(tﬂ Q)) = K(fi,n(ta F, S)) = K(fz(t7Xn(F)7Xn(S))) < K(Xn(F)7Xn(S))
= K(RU{HSU{ ) = K(FLS) UG8 U (R, )

1 1
= maX{K(Fl, Sl), K(Sl, ﬁ)7 K(Fl, E)}
If K(S1) = p, then there exist W; C C[0,1] and m € N such that S; C |J;~; W; and diam(W;) < p. Hence,
(3:51) C Uiz (> W),

. 1 1 .
diam(a, W;) = sup [[(=,&) — (=, n)|l«+ = sup |{ —n| = diam(W;),

and K(1,8) < K(S1). By usmg a similar method, we conclude that K(S1) < K(%,51). Thus, K(S1) =
K(%,5) and K(F) K(Fy,2). Thus, there exist mo € N and (E;, H;) C C[0,1] x C[0,1] such that
(Fl,Sl) C U2 (E;, H;) and dzam(EZ,H) < po whenever K(F,S1) = po. This implies that

sup{H(e, h) - (6/7 h/)H* : (6, h)? (6/7 h/) S (Ei7 HZ)} < po

and so
sup{max{|e — €', |h — K|} : e, e’ € E;, h,h' € H;} < po.

Hence, sup, crcp, |6 — €| < po and supy, prep, |h — h'| < po. Thus, F1 C U2 B; with diam(E;) < po and
S U H; with diam(H;) < po for all i. This implies that K(Fy) < K(F1,S1) and K(S7) < K(F1,57).
Hence, max{K (F},51), K (%, 51), K(F1, 1)} = K(Fy,S1) and so

K(fin(t,Q)) < gi(t)K(F1,51) < gi(t) K(Q)
for all i. Also, we have K (T,,(Q fo (t,8) fin(s,Q)ds fo as(t,8) fan(s,Q)ds). For each s € [0,1],
n € N and i = 1,2, put p;(s ) = K(fm( )) g (s) ( ). Choose a natural number ky and bounded

sets Ui ; C C[0,1] x C[0,1] (i = 1,2) such that f;(s,Q) € U2, Usj. Then, we have diam (U ;) < pi(s) <
9i(s)K(Q) and

1 ko
G, (t,8) fin(s / (s)U; jds = U/ s)U; jds,

for i = 1,2, where 0;(s) = (( 5)° )(1 + A;) and fo (s)U; ;ds = {fo u(s)ds : u € U; ;}. Thus,

dmm/ 0i(s)U; jds) = sup |/ A ds—/ 0;(s)u'(s)ds|
u,u' €U; ;

1
= us}ég” |/0 0;(s)|u(s) —u'(s)|ds < /0 0;(s)diam(U; j)ds < /0 0;(s)pi(s)ds
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and so

/Gaztsfm Q)ds) /9 K(fin(s ds</ 0:(s)gi(s)K(Q)ds

(@ll8illollgills < ki K(Q),

where k; = [|6; ||Oo|| gilli- It is easy to check that k; € [0,1) for all i = 1,2. By using last inequality, we get
max;—1 2{ K ( fo ai(t,8) fin(s,Q)ds)} < kK(Q), where k = max{ki, ka}.

Now, we show that K(A,B) = max{K(A),K(B)}. As it proved in first part, K(A) < K(A,B) and
K(B) < K(A,B), where A,B C X := C[0,1] x C[0,1] are bounded sets and ||(.,.)||«+ defined on X? by
ll(e1,€2)|ls« = max{|le1]s, |le2llx}. It is known that (X2, ||(.,.)||«) is a Banach space. Let K(A) := 1,
K(B) := ry and r := max{ry,r2}. Choose natural numbers n; and ng such that A C |J;2, Z; and B C
U 1 Vi, where Z;,V; C X, diam(Z;) < rq and diam(V;) < rg for i =1,...,ny and j = 1,...,ny. Without
less of generality suppose that n; > ng ( in other case the proof is similar). Put V,,41 = V00 = ... =
Vi, := Va,. Then, (4, B) c U,(Z;, Vi) and for each ¢ = 1,...,ny, we have

diam(Z;,V;) = sup Il(z,v) — (2,0 ||ax = sup 1(z = 2,0 — v) || 4x
z,2'€Z; v EV; z,2'€Z; v €V}

= sup  {max{|[(z = 2)[ls (v = V")« }} < max{ri,r2} =1
2,2/ €Z; v €V

Hence, K(A, B) < max{K(A), K(B)} and so K(A, B) = max{K(A), K(B)}. Thus,

K(T /Galtsfm /Gaztsfzn ,Q)ds)

= max{/ Go,(t,s)fin(s,Q)ds} < kK (Q).
0

i=1,2

By using the Darbo’s fixed point theorem, T}, has a fixed point in C for all n. This implies that the system
has a solution (z,,y,) € C, that is,

1
_ /0 G (t,5) fra(s, 2a(s), yu(s))ds

and

1
_/0 Gy (t,8) fan (s, 20(8), yn(s))ds.

Now, we provide our main result.

Theorem 2.2. Letn > 3, f1, fa € Car([0,1] x(0,0)?), a1, az E (n,n+1], p1,p2 > 1 and hy, hy € L'[0,1] be
non-negative functions with [IP* (hy(t))]i=1, [IP* (hl( ))]i=1 € [0,3). Suppose that there exist g1, g2 € L([0,1])

such that ||gi1 < w and K(fi(t,Q)) < ¢i(t)K(Q) fori=1,2, where K(Q) is the Kuratowski measure
of non-compactness of a bounded set Q. Then the singular system

Da1x+f1(taw7y) =0,
Da2y+f2(tax7y) = 07

with boundary conditions x(0) = y(0) = 0, 2 (0) = yD(0) =0 fori=2,...,n—1, z(1) = [IP* (hy(t)z(t))]s=1
and y(1) = [IP2(ha(t)y(t))]t=1 has a solution in C.
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Proof. By using Theorem 2.1, the problem (1.2) has a solution (z,,y,) € C for all n. Since C is closed,
there is (z,y) € C such that lim, oo (2, yn) = (z,y). It is easy to check that (z,y) satisfies the boundary
condition of the problem (1.1). Also, one can check that lim, o fin(t, 2n(t), yn(t)) = fi(t,x(t),y(t)) for
almost all t € [0,1] and ¢ = 1,2. On the other hand, we have G, (t,s) fin(s, zn(s),yn(s)) < 1;(_27&01’))%( )
for all m, i = 1,2 and almost all (¢,s) € [0,1] x [0,1]. Now by usmg the Lebesgue dominated convergence
theorem, we obtain z(t fo ar (8, 8) fin(s,2(s),y(s))ds and y(t fo as (t, 8) fon(s,(s),y(s))ds. This
implies that, (z,y) is a solutlon for the problem (1.1). O

Here, we provide an example to illustrate our main result.

Example 2.3. Consider the singular fractional system

Da(t) + % (La(t) + Ly(t) = 0,

1
t2
D¥a(t) + 22(La(t) + By(1) = 0,
t3
with boundary conditions z(0) = y(0) = 2/(0) = ¥'(0) = 2”(0) = ¥"(0) = 0, z(1) = [I%(tl‘ t))]t=1 and
5,1
y(1) = [I2(t2y()]:e (t,z,y) = (G2 + 3v), falt,z,y) = %Gz + 2y),
q(t) = %7 ga(t) = %2, u(z,y) = 32+ gy and v(z,y) = jo+ 3y. Put oy = 5, ap = 12, p; =

hi(t) =t, ha(t) = t2. Tt is casy to check that f1, fo € Car([0,1] x (0,00)?), g1, g2 € L[0, 1] are non-negative
and hy, hy € L1[0,1]. Also, we have

1- Now, consider the maps fi
2

o

~
ol

P B 1t Lo 1 TRIE) 2 4 1
17 (i ()] = (13 ()i r@)/o (oo = i) = s € 05)

po 5,1 1 1 311 INENNE)) 1 Yrdvrm N 1

(P2 (ha(t)]t=1 = [12(t2)]t=1 F(g’)/o (1—3)232‘18_1“(%) 12“(4)2 - NG . 64 2 €0.5),

1 7T an —
g1llL = ; O;dt:OG < VT = F(22 D) = I( 12 )
and || g2|1 = f01 %dt =03< F(%Z_l) = F(O‘Q b On the other hand, we have
K(u(Q) = K(u((4,B)=K(A+B)
— max{K(4), K(B)} 5+ 5) = K5+ 3) < K(@)

for all @ = (A, B) C C|0, 1] x C0,1]. Since fi(t,z,y) = g(t)u(z,y), we get
K(f(t,Q)) = K(g1(H)u(Q)) = 1 () K (u(Q)) < g1(H) K(Q).

By using a similar method, we get K(f(t,Q)) = K(g1(t)u(Q)) = 91(t) K(u(Q)) < ¢1(t) K(Q). Now by using
Theorem 2.2, the system (2.1) has a solution.
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