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1. Introduction

Van Rooij [15] introduced the concept of ultrametric space as follows:
Let (X, d) be a metric space. Then (X, d) is called an ultrametric space, if the metric d satisfies the strong
triangle inequality, i.e., for all x, y, z ∈ X:

d(x, y) ≤ max{d(x, z), d(y, z)}.

In this case, d is called to be ultrametric.

The fixed point theorems are used to determine conditions for the existence of solutions of polynomial
differential equations of any order, or even of systems of such equations, see Priess-Crampe and Ribenboim
[10, 11]. Methods of ultrametric dynamics also find applications in the study of differential equations over
rings of power series, as in the work of van der Hoeven, for example see his lecture notes [14]. A very different
and unexpected application of ultrametric dynamics is found in the determination of solutions of the famous
Fermat equation in square matrices with entries in a p-adic field, see [13]. Programs with positive clauses
were shown to have models by means of the fixed point theorem of Knaster and Tarski about monotonic
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self-maps in a complete lattice. More general programs, involving negation in clauses lead to the ultrametric
space of maps from the Herbrand base with values 0, 1; in this space the values of the distance are the
subsets of the Herbrand base. The fixed point of the immediate consequence operator gives conditions for
the existence of models for the program, see Priess-Crampe and Ribenboim [9, 12] and Hitzler and Seda
[3, 4].

As seen above, fixed point theory has a wide application in almost all fields of quantitative sciences such
as economics, biology, physics, chemistry, computer science and many branches of engineering. It is quite
natural to consider various generalizations of metric spaces in order to address the needs of these quantitative
sciences. That’s why in 2004, Mustafa and Sims introduced a new class of generalized metric spaces (see
[7, 8]), which are called G-metric spaces, as generalization of a metric space (X, d). Subsequently, many
fixed point results on such spaces appeared (see, for example, [2, 5, 6]). Here, we present the necessary
definitions and results in G-metric spaces, which will be useful for the rest of the paper. However, for more
details, we refer to [1, 2, 7, 8].

We start with basic definitions and a detailed overview of the essential results developed in the interesting
works mentioned above.

Definition 1.1 ([8]). . Let X be a nonempty set. Suppose that G : X ×X ×X → [0,+∞) is a function
satisfying the following conditions:

G1) G(x, y, z) = 0, if x = y = z.

G2) 0 < G(x, x, y), for all x, y, z ∈ X with x ̸= y.

G3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X with z ̸= y.

G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . ., (symmetry in all three variables).

G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z), for all x, y, z ∈ X, ( rectangle inequality).

then the function G is called a generalized metric, or more specifically a G-metric on X and the pair (X,G)
is a G-metric space.

Definition 1.2 ([8]). Let (X,G) be a G-metric space, then for x0 ∈ X, r > 0, the G-ball (stripped ball)
with center x0 and radius r is

B(x0, r
−) = {y ∈ X : G(x0, y, y) < r}

and the dressed ball of radius r and center x0 is

B(x0, r) = {y ∈ X : G(x0, y, y) ≤ r}.

Proposition 1 ([8]). Let (X,G) be a G-metric space, then for any x0 ∈ X and r > 0, we have,

(1) if G(x0, x, y) < r, then x, y ∈ B(x0, r
−),

(2) if y ∈ B(x0, r
−), then there exists δ > 0, such that B(y, δ−) ⊆ B(x0, r

−).

2. G-Ultrametric Spaces

First, we introduce a class of G-metric spaces, which are called G-ultrametric spaces and in the sequel
give results which are required.

Definition 2.1. A G-metric space (X,G) is called a G-ultrametric space, if the G-metric G satisfies the
strong rectangle inequality, i.e., for all a, x, y, z ∈ X:

G(x, y, z) ≤ max{G(x, a, a), G(a, y, z)}.

In this case, G is called a generalized ultrametric and the pair (X,G) is a G-ultrametric space.
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Examples

(a) Let X be a nonempty set. The following function on X3 defines a G-ultrametric on X:

G(x, y, z) =

{
0 x = y = z,
1 otherwise.

In this case, (X,G) is called a discrete G-ultrametric space (or trivial G-ultrametric space).

(b) Every G-ultrametric on X defines an ultrametric dG on X by,

dG(x, y) = max{G(x, y, y), G(y, x, x)}, for all x, y ∈ X.

Conversely, for any d-ultrameric d on X,

G1(x, y, z) = max{d(x, y), d(y, z), d(x, z)}, for all x, y ∈ X,

is readily seen to define an G-ultrametric on X3.

(c) The mapping G : N× N× N → [0,+∞) is defined by,

G(m,n, l) =

{
0 m = n = l,
max{1 + 1

m , 1 + 1
n , 1 +

1
l } otherwise.

is a G-ultrametric on N3.

2.1. The G-Ultrametric topology

Proposition 2. Let (X,G) be a G-ultrametric space. Then the following statements hold.

(a) Any point of a G-ball is a center of the ball.

(b) If two G-balls have a common point, one is contained in the other.

(c) The diameter of a G-ball is less than or equal to its radius.

Proof. (a) Let x0 be a point in B(x, r−) and let w belongs to B(x0, r
−), it follows from Definitions 2.1 and

1.2 that

G(x,w,w) ≤ max{G(x, x0, x0), G(x0, w, w) < r.

Hence B(x0, r
−) ⊆ B(x, r−). Conversely, suppose that u be a point in B(x, r−), hence

G(x0, u, u) ≤ max{G(x0, x, x), G(x, u, u)}
= max{G(x, x0, x), G(x, u, u)}
< max{G(x0, x0, x), G(x, x0, x0), G(x, u, u)}
< r,

which implies that B(x, r−) ⊆ B(x0, r
−). Thus B(x, r−) = B(x0, r

−).
(b) Suppose that B(x, r−) and B(y, s−) are two G-balls such that, B(x, r−) ∩ B(y, s−) ̸= ∅ and r ≤ s.
Now, let w ∈ B(x, r−) and a ∈ B(x, r−) ∩B(y, s−). Then

G(y, w,w) ≤ max{G(x,w,w), G(y, x, x)}
≤ max{G(x,w,w), G(y, a, a), G(a, x, x)}
≤ max{G(x,w,w), G(y, a, a), G(a, a, x), G(x, a, a)}
≤ max{r, s} = s,

which implies that B(x, r−) ⊆ B(y, s−).
(c) Let B(a, r−) be a G-ball in G-ultrametric space X. Then for all x, y and z in X,

G(x, y, z) ≤ max{G(x, a, a), G(a, y, z)}
≤ max{G(x, a, a), G(y, a, a), G(z, a, a)}
< r,
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which implies that

Diam(B(a, r−)) = sup{G(x, y, z) | x, y, z ∈ B(a, r−)} ≤ r.

Proposition 3. Let (X,G) be a G-ultrametric space. Then the following statements hold.

(a) If x ∈ S(x0, r), then B(x, r−) ⊆ S(x0, r) and

S(x0, r) = ∪x∈S(x0,r)B(x, r−),

which S(x0, r) = {y ∈ X : G(x0, y, y) = r}.
(b) The spheres S(x0, r)(r > 0) are open and closed.

(c) The dressed balls of positive radius are open and the stripped balls are closed.

Proof. (a) Let w be an arbitrary point in B(x, r−). Then

r = G(x0, x, x) ≤ G(x0, w, x)

≤ max{G(w,w, x), G(x0, w, w)}
= G(x0, w, w) ≤ r,

it follows that B(x, r−) ⊆ S(x0, r) and S(x0, r) = ∪x∈Sr(x0)B(x, r−).
(b) This is an immediate consequence of (a).
(c) If r > 0, then B(a, r) = B(a, r−) ∪ S(a, r) is open. Also, if r > 0, then B(a, r−) = B(a, r)− S(a, r) is
closed. If r = 0, then B(a, r−) = ∅ is closed.

Consequently, the G-ultrametric topology τ(G) is zero-dimensional and coincides with the ultrametric
topology arising from dG. Thus, while isometrically distinct, every G-ultrametric space is topologically
equivalent to an ultrametrics space. This allows us to transport many concepts and results from ultrametric
spaces into the G-ultrametric space setting.

3. The Main Theorem

Theorem 3.1. Let (X,G) be a spherically complete G-ultrametric space. If f and T : X → X are self maps
on X satisfying

T (X) ⊆ f(X)

and for every tree distinct points x, y, z in X,

G(Tx, Ty, Tz) < max{G(fx, fy, fz), G(fx, Tx, Tx),

G(fy, Ty, Ty), G(fz, Tz, Tz)},

then, there exists z ∈ X such that fz = Tz. Further, if f and T are coincidentally commuting at z, then z
is the unique common fixed point of f and T .

Proof. LetBa = B(fa,G(fa, Ta, Ta)) denotes the closed spheres centered at fa with the radiusG(fa, Ta, Ta)
and let A be the collection of these spheres for all a ∈ X.

The relation Ba ≤ Bb holds, if and only if Bb ⊆ Ba is a partial order on A. Now, consider a totally
ordered subfamily A1 of A. Since spherically complete X, we have∩

Ba∈A1

Ba = B ̸= ∅.
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Let b ∈ B and Ba ∈ A1. Since fb ∈ Bb ∩ Ba, we have G(fa, fb, fb) ≤ G(fa, Ta, Ta). Now, we claim that
Tb ∈ Ba. By assumption, we have

G(fa, T b, T b) ≤ max{G(Ta, Tb, T b), G(fa, Ta, Ta)}
≤ max{G(fa, fb, fb), G(fa, Ta, Ta), G(fb, T b, T b)}
= G(fa, Ta, Ta).

Therefore, Tb ∈ Ba. It follows from Proposition 2 that G(fb, T b, T b) ≤ G(fa, Ta, Ta). So we have proved
that Ba ≤ Bb. Thus Bb is the upper bound for the family A1. By Zorn’s lemma, A has a maximal element,
say Bz, z ∈ X. We are going to prove that fz = Tz. Suppose, for contradiction, that fz ̸= Tz. Since
Tz ∈ T (X) ⊆ f(X), there exists w ∈ X such that Tz = fw. Clearly z ̸= w. Now we have

G(fw, Tw, Tw) = G(Tz, Tw, Tw)

< max{G(fz, fw, fw), G(fz, Tz, Tz), G(fw, Tw, Tw)}
= G(fz, fw, fw).

Thus fz /∈ Bw. Hence Bz ⊈ Bw. It is a contradiction to the maximality of Bz. Hence fz = Tz. Further
assume that f and T are coincidentally commuting at z . Then fz = f(fz) = fTz = Tfz = T (Tz) = T z.
Suppose fz ̸= z . Now, we have

G(Tfz, Tz, Tz) < max{G(f2z, fz, fz), G(f2z, Tfz, Tfz), G(fz, Tz, Tz), G(Tfz, Tz, Tz)}.

Hence fz = z. Thus fz = z. Let u be a different fixed point of f and T . For u ̸= z we have that

G(u, z, z) = G(Tu, Tz, Tz)

< max{G(fu, fz, fz), G(fu, Tu, Tu), G(fz, Tz, Tz)}
= G(fu, fz, fz) = G(u, z, z)

which is a contradiction.

Theorem 3.2. Let (X,G) be a G-ultrametric space, f, S, T : X → X satisfying:

(1) f(X) is spherically complete.
(2) For every tree distinct points x, y, z ∈ X,

G(Sx, Ty, Tz) < max{G(fx, fy, fz), G(fx, Sx, Sx), G(fy, Ty, Ty), G(fz, Tz, Tz)}.

(3) fS = Sf, fT = Tf, ST = TS.
(4) S(X) ⊆ f(X), T (X) ⊆ f(X).

Then either fw = Sw or fw = Tw for some w ∈ X.

Proof. For a ∈ X, let Ba = B(fa,max{G(fa, Sa, Sa), G(fa, Ta, Ta)}) denote the closed sphere centered
at fa with the radius max{G(fa, Sa, Sa), G(fa, Ta, Ta)}. Let A be the collection of all the spheres for all
a ∈ f(X). Then the relation Ba ≤ Bb iff Bb ⊆ Ba is a partial order on A. Now, consider a totally ordered
subfamily A1 of A. Since f(X) is spherically complete, we have ∩Ba∈A1Ba = B ̸= ∅. Let fb ∈ B where
b ∈ f(X) and Ba ∈ A1. Then fb ∈ Ba. Hence, G(fb, fa, fa) ≤ max{G(fa, Sa, Sa), G(fa, Ta, Ta)} If a = b
then Ba = Bb. Assume that Ba ̸= Bb. Let x ∈ Bb. Then

G(x, fb, fb) ≤ max{G(fb, Sb, Sb), G(fb, T b, T b)}
≤ max{G(fb, fa, fa), G(fa, Ta, Ta), G(Ta, Sb, Sb), G(fb, fa, fa),

G(fa, Sa, Sa), G(Sa, Tb, T b)}
< max{G(fb, fa, fa), G(fa, Ta, Ta), G(fa, Sa, Sa),max{G(fb, fa, fa),

G(fb, Sb, Sb), G(fa, Ta, Ta)},max{G(fa, fb, fb), G(fa, Sa, Sa),

G(fb, T b, T b)}}
= max{G(fa, Sa, Sa), G(fa, Ta, Ta)}.
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Thus
G(x, fb, fb) < max{G(fa, Sa, Sa), G(fa, Ta, Ta)}.

Now,

G(x, fa, fa) ≤ max{G(x, fb, fb), G(fb, fa, fa)}
≤ max{G(fa, Sa, Sa), G(fa, Ta, Ta)}.

Thus x ∈ Ba. Hence Bb ⊆ Ba for any Ba ∈ A1. Thus Bb is an upper bound in A for the family A1 and
hence by Zorn’s Lemma, there is a maximal element in A, say Bz, z ∈ f(X). There exists w ∈ X such that
z = fw. Suppose fw ̸= Sw and fw ̸= Tw.

G(Sfw, TSw, TSw) < max{G(f2w, fSw, fSw), G(f2w, Sfw, Sfw), G(fSw, TSw, TSw)}
= G(f2w, fSw, fSw)

since fS = Sf .

G(STw, Tfw, Tfw) < max{G(fTw, f2w, f2w), G(fTw, STw, STw), G(f2w, Tfw, Tfw)}
= G(f2w, fTw, fTw)

since fT = Tf .

G(Sfw, S2w,S2w) ≤ max{G(Sfw, TSw, TSw), G(TSw, Tfw, Tfw), G(Tfw, S2w, S2w)}
< max{G(f2w, fSw, fSw), G(f2w, fTw, fTw),max{G(fSw, f2w, f2w),

G(fSw, S2w, S2w), G(f2w, Tfw, Tfw)}}
= max{G(f2w, fSw, fSw), G(f2w, fTw, fTw)}.

We have

max{G(STw, Tfw, Tfw), G(Tfw, T 2w, T 2w)} < max{G(f2w, fTw, fTw), G(f2w, fSw, fSw)}.

If
max{G(f2w, fTw, fTw), G(f2w, fSw, fSw)} = G(f2w, fSw, fSw).

Then
max{G(Sfw, TSw, TSw), G(Sfw, S2w, S2w)} < G(f2w, fSw, fSw),

which gives f2w /∈ BSw. Hence fz /∈ BSw. But fz ∈ Bz. Hence Bz ⊈ BSw. It is a contradiction to the
maximality of Bz in A, since Sw ∈ S(X) ⊆ f(X). If

max{G(f2w, fTw, fTw), G(f2w, fSw, fSw)} = G(f2w, fTw, fTw),

then max{G(STw, Tfw, Tfw), G(Tfw, T 2w, T 2w)} < G(f2w, fTw, fTw), which gives f2w /∈ BTw. Hence
fz /∈ BTw, but fz ∈ Bz, so Bz ⊈ BTw. It is a contradiction to the maximality of Bz in A, since Tw ∈
T (X) ⊆ f(X). Therefore, eitherfw = Sw or fw = Tw.

References

[1] R. P. Agarwal, E. Karapinar, Remarks on some coupled fixed point theorems in G-metric spaces, Fixed Point
Theory Appl., 2013 (2013), 33 pages. 1
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