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Abstract

In this paper, we will consider the coupled fixed point problem for a multi-valued operator satisfying a
contraction condition with respect to the excess functional in b-metric spaces. The approach is based
on a fixed point theorem for a multi-valued operator in the setting of a b-metric space. On one hand,
we will consider the problem of the existence of the solutions and on the other hand, data dependence,
well-posedness, Ulam-Hyers stability and limit shadowing property of the coupled fixed point problem are
discussed. Some applications to a system of integral inclusions and to a multi-valued periodic boundary
value problem are also given. c⃝2016 All rights reserved.
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1. Introduction

Nadler’s contraction principle [15] is an extension to the multi-valued case of the classical Banach’s con-
traction principle. There are many applications of these results, mainly in the theory of operator equations
and inclusions, see [3, 4, 6, 10, 20]. On the other hand, several theorems were given for the so-called coupled
fixed point problem ([5, 9, 14]). In the multi-valued setting, this problem is as follows:

Let (X, d) be a metric space and P (X) be the family of all nonempty subsets of X. If G : X ×X →
P (X) is a multi-valued operator, then by definition, a coupled fixed point problem for G means to find a
pair (x∗, y∗) ∈ X ×X satisfying, {

x∗ ∈ G(x∗, y∗),
y∗ ∈ G(y∗, x∗).

(1.1)
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The purpose of this paper is to give new fixed point results and new coupled fixed point theorems for
multi-valued operators satisfying a contraction type condition with respect to the excess functional. We
will consider here the context of a b-metric space. Our results are new even for the case of metric spaces
and they extend some theorems given in [8, 18, 19] and other papers in the literature. Some applications to
integral and differential inclusions are also given.

2. Preliminaries

We will recall first the definition of a b-metric space.

Definition 2.1 (Bakhtin [1], Czerwik [7]). Let X be a nonempty set and let s ≥1 be a given real number.
A functional d : X ×X → R+ is said to be a b-metric with constant s, if all the axioms of the metric take
place with the following modification of the triangle inequality property:

d(x, z) ≤ s[d(x, y) + d(y, z)], for all x, y, z ∈ X.

Under the above hypotheses, the pair (X, d) is called a b-metric space with constant s.

In the framework of a b-metric space, a set Y ⊂ X is said to be closed, if for any sequence (xn)n∈N in Y
which converges (with respect to d) to an element x, we have x ∈ Y . The notions of bounded or compact
sets are defined in a similar way to the case of usual metric spaces. For example, the set Y ⊂ X is said to
be bounded, if its diameter,

δ(Y ) := sup
x,y∈Y

d(x, y),

is finite, while Y is compact, if every sequence sequence (xn)n∈N ⊂ Y has a convergent subsequence in Y .
Let (X, d) be a b-metric space and P(X) be the set of all subsets of X. We denote

P (X) := {Y ∈ P(X) | Y ̸= ∅}, Pcl(X) := {Y ∈ P(X) | Y is closed }, Pb,cl(X) := {Y ∈ P(X) |
Y is bounded and closed }, Pcp(X) := {Y ∈ P(X) | Y is compact }.

Let (X, d) be a b-metric space. If T : X → P (X) is a multi-valued operator, then x ∈ X is called fixed
point for T, if and only if x ∈ T (x). We denote by Fix(T ) the fixed point set of T and by SFix(T ) the set
of all strict fixed points of T , i.e., the elements x ∈ X such that T (x) = {x}.

If X,Y are two nonempty sets and T : X → P (Y ), then we will denote by,

Graph(T ) := {(x, y) ∈ X × Y : y ∈ T (x)},

the graph of T . In the context of a b-metric space (X, d) the following generalized functionals are used in
the main sections of the paper.

1. The gap functional generated by d:

Dd : P (X)× P (X) → R+, Dd(A,B) = inf{d(a, b) | a ∈ A, b ∈ B}.

2. The excess generalized functional:

ρd : P (X)× P (X) → R+ ∪ {+∞}, ρd(A,B) = sup{Dd(a,B)|a ∈ A}.

3. The Hausdorff-Pompeiu generalized functional :

Hd : P (X)× P (X) → R+ ∪ {+∞},Hd(A,B) = max{ρd(A,B), ρd(B,A)}.

4. The Pompeiu generalized functional:

H+
d : P (X)× P (X) → R+ ∪ {+∞}, H+

d (A,B) :=
1

2
{ρd(A,B) + ρd(B,A)}.



Iulia Coroian, Gabriela Petruşel, Commun. Nonlinear Anal. 1 (2016), 42–62 44

Definition 2.2 ([18]). Let X be a nonempty set, let ” ≤ ” be a partial order on X and d be a b-metric on
X with constant s ≥ 1. Then the triple (X,≤, d) is called an ordered b-metric space if,

i. ” ≤ ” is a partial order on X.

ii. d is a b-metric on X with constant s ≥ 1.

iii. If (xn)n∈N is a monotone increasing sequence in X and xn → x∗ ∈ X, then xn ≤ x∗, for all n ∈ N.
iv. If (yn)n∈N is a monotone decreasing sequence in X, and yn → y∗ ∈ X, then yn ≥ y∗, for all n ∈ N.

Definition 2.3 ([18]). Let (X,≤) be a partially ordered set. Then, the partial order ≤ induces on the
product space X ×X the following partial order,

for (x, y), (u, v) ∈ X ×X, (x, y) ≤p (u, v) ⇔ x ≤, y ≥ v.

Definition 2.4 ([19]). Let (X, d) be a b-metric space and G : X ×X → P (X) be a multi-valued operator.
Then by definition, a coupled fixed point for G is a pair (x, y) ∈ X ×X satisfying,

(P1)

{
x ∈ G(x, y),
y ∈ G(y, x).

(2.1)

We will denote by CFix(G) = {(x, y) ∈ X ×X|x ∈ G(x, y) and y ∈ G(y, x)} the coupled fixed point set of
G.

Lemma 2.5 ([19]). Let (X, d) be a b-metric space with constant s ≥ 1, A,B ∈ P (X) and q > 1. Then, for
every a ∈ A, there exists b ∈ B such that ρd(A,B) ≤ qd(a, b).

3. Fixed point theorems

In this part, we will present some fixed point theorems for a multi-valued operator in b-metric spaces.
See also [2, 11, 12, 17] for related results.

Definition 3.1. Let (X,d) be a b-metric space with constant s ≥ 1. A multi-valued operator
T : X → Pb,cl(X) is called H+-contraction with constant k if,

1. there exists a fixed real number 0 < k < 1 such that, for every x, y ∈ X, we have,

H+
d (T (x), T (y)) ≤ kd(x, y),

2. for every x ∈ X and y ∈ T (x) we have,

Dd(y, T (y)) ≤ H+(T (x), T (y)).

For the case of metric spaces see [16].

Definition 3.2. Let (X,⪯) be a partially ordered set and A,B ∈ P (X). We will denote:
a) A ≤st B ⇔ ∀a ∈ A, ∀b ∈ B we have a ⪯ b,
b) A ≤wk B ⇔ ∀a ∈ A, ∃b ∈ B such that a ⪯ b.

Remark 3.3. Notice that, if A,B,C ∈ P (X), then A ≤st B and B ≤st C implies A ≤st C. The same property
also holds for ≤wk.

Definition 3.4. Let (X,⪯) be a partially ordered set and T : X → P (X) be a multi-valued operator. We
say that T is strong increasing (respectively strong decreasing) on X, if for every x, y ∈ X with x ⪯ y, we
have that T (x) ≤st T (y) (respectively T (x) ≥st T (y)).

The first result of this section is a fixed point theorem in an ordered b-metric space.
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Theorem 3.5. Let (X,⪯, d) be a complete ordered b-metric space with constant s ≥ 1. Let T : X → Pcl(X)
be a multi-valued operator strong increasing with respect to ” ⪯ ”. Suppose that,

i) there exists k ∈
(
0,

1

s

)
such that ρd(T (x), T (y)) ≤ kd(x, y), for all x, y ∈ X with x ⪯ y,

ii) there exists an element x0 ∈ X such that x0 ≤wk T (x0).

Then the following conclusions hold,

a) Fix(T ) ̸= ∅ and there exists a sequence (xn)n∈N ⊂ X of successive approximation of T starting from
x0 ∈ X which converges to a fixed point of T .

b) In particular, if d is continuous b-metric on X, then

d(xn, x
∗) ≤

skn

1− sk
d(x0, x1), ∀n ∈ N∗ and x1 ∈ T (x0).

Proof. a) Let x0 ∈ X such that x0 ≤wk T (x0). By ii) we get that there exists x1 ∈ T (x0) such that x0 ⪯ x1.
Using Lemma 2.5 we obtain that, for any q > 1, there exists x2 ∈ T (x1) such that,

d(x1, x2) ≤ qρ(T (x0), T (x1)) ≤ qkd(x0, x1).

Since x1 ∈ T (x0), x2 ∈ T (x1), x0 ⪯ x1 and T is a strong increasing multi-valued operator, we obtain that
x1 ⪯ x2. By Lemma 2.5 we get that there exists x3 ∈ T (x2) such that,

d(x2, x3) ≤ qρ(T (x1), T (x2)) ≤ qkd(x1, x2) ≤ (qk)2d(x0, x1).

By induction, we obtain a sequence (xn)n∈N in X with the following properties:

1) xn+1 ∈ T (xn), for all n ∈ N,
2) xn ⪯ xn+1, for all n ∈ N,
3) d(xn, xn+1) ≤ (qk)nd(x0, x1), for all n ∈ N.

Let 1 < q <
1

sk
, we show that (xn)n∈N is a Cauchy sequence. Indeed, we have,

d(xn, xn+p) ≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + ...+ sp−1d(xn+p−1, xn+p)

≤ s(qk)nd(x0, x1) + s2(qk)n+1d(x0, x1) + ...+ sp−1(qk)n+p−1d(x0, x1)

= s(qk)n
1− (sqk)p

1− sqk
d(x0, x1) ≤ s(qk)n

1

1− sqk
d(x0, x1).

Hence,

d(xn, xn+p) ≤
s(qk)n

1− sqk
d(x0, x1) → 0, as n→ ∞, ∀p ∈ N. (3.1)

This implies that the sequence (xn)n∈N is Cauchy in X. Since (X, d) is a complete b-metric space, there
exists x∗ ∈ X such that xn → x∗. Moreover xn ⪯ x∗, for all n ∈ N. Then, we have,

D(x∗, T (x∗)) ≤ s[d(x∗, xn+1) +Dd(xn+1, T (x
∗))]

≤ s[d(x∗, xn+1) + ρd(T (xn), T (x
∗))]

≤ s[d(x∗, xn+1) + kd(xn, x
∗)].

Hence D(x∗, T (x∗)) → 0 as n→ ∞. Since T has closed values, we obtain that x∗ ∈ T (x∗).
(b) By (3.1), letting p→ ∞ and q ↘ 1, we get that,

d(xn, x
∗) ≤

skn

1− sk
d(x0, x1), ∀n ∈ N∗.
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Remark 3.6. If we only assume that X is a nonempty set, ⪯ is a partially ordering on X and d is a complete
b-metric with constant s ≥ 1, then the conclusions of the above theorem hold, if additionally, the graph of
T is closed in X ×X.

The second result is a fixed point theorem in a b-metric space under a contraction type condition on the
whole space. In this case, we do not need a monotonicity condition on the multi-valued operator.

Theorem 3.7. Let (X, d) be a complete b-metric space with constant s ≥ 1 and T : X → Pcl(X) a multi-

valued operator for which there exists k ∈
(
0,

1

s

)
such that,

ρd(T (x), T (y)) ≤ kd(x, y), for all x, y ∈ X.

Then:

a) Fix(T) ̸= ∅ and there exists a sequence (xn)n∈N ⊂ X of successive approximations of T starting from
any (x0, x1) ∈ Graph(T ) which converges to a fixed point x∗ of T .

b) In particular, if d is a continuous b-metric, then

d(xn, x
∗) ≤

skn

1− sk
d(x0, x1), ∀n ∈ N∗.

c) If additionally SFix(T ) ̸= ∅, then Fix(T ) = SFix(T ) = {x∗}.

Proof. a) Let x0 ∈ X and x1 ∈ T (x0) be arbitrary chosen. By Lemma 2.5 we have that for any q > 1, there
exists x2 ∈ T (x1) such that,

d(x1, x2) ≤ qρ(T (x0), T (x1)) ≤ qkd(x0, x1).

Repeating the same argument n−times, we get a sequence of successive approximations for T starting from
(x0, x1) ∈ Graph(T ) such that, for each n ∈ N, we have,

d(xn, xn+1) ≤ (qk)nd(x0, x1), for all n ∈ N.

Now, we will prove that (xn)n∈N is a Cauchy sequence on X. Indeed, for 1 < q <
1

ks
, we have,

d(xn, xn+p) ≤ s(qk)n
1− (sqk)p

1− sqk
d(x0, x1) → 0, as n→ ∞.

This implies that the sequence (xn)n∈N is Cauchy and hence it is convergent in (X, d) to some x∗ ∈ X.
Then,

D(x∗, T (x∗)) ≤ s[d(x∗, xn+1) +Dd(xn+1, T (x
∗))]

≤ s[d(x∗, xn+1) + ρ(T (xn), T (x
∗))]

≤ s[d(x∗, xn+1) + kd(xn, x
∗)] → 0, as n→ ∞.

Thus, Fix(T ) ̸= ∅.
b) If the b-metric d is continuous, then by,

d(xn, xn+p) ≤ s(qk)n
1− (sqk)p

1− sqk
d(x0, x1),

letting p→ ∞ and q ↘ 1, we obtain the following desired estimation,

d(xn, x
∗) ≤

skn

1− sk
d(x0, x1), ∀n ∈ N∗.
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c) Let y∗ ∈ SFix(T ). We consider another y ∈ SFix(T ) such that y ̸= y∗. Then,

d(y, y∗) = ρ(T (y), T (y∗)) ≤ kd(y, y∗).

Thus, since k <
1

s
< 1, we obtain that d(y, y∗) = 0 and so SFix(T ) = {y∗}. Let x∗ ∈ Fix(T ) with x∗ ̸= y∗.

We have,
d(x∗, y∗) = Dd(x

∗, T (y∗)) ≤ ρd(T (x
∗), T (y∗)) ≤ kd(x∗, y∗).

Since k <
1

s
< 1, we obtain that d(y∗, x∗) = 0. Thus y∗ = x∗ and Fix(T ) = {x∗}. Therefore, SFix(T ) =

Fix(T ) = {x∗}.

Remark 3.8. If we assume that,

ρd(T (x), T (y)) ≤ kd(x, y), for all x, y ∈ X,

then by reversing the values of x and y we get that the following condition also holds,

ρd(T (y), T (x)) ≤ kd(x, y), for all x, y ∈ X.

Thus, by adding the above two relations we get that,

H+
d (T (x), T (y)) ≤ kd(x, y), for all x, y ∈ X.

Thus, we get the assumption (1) in Definition (3.1). Of course, the reverse implication do not takes place.

Remark 3.9. The above results generalize some theorems given in Wang [21] for the case of usual met-
ric spaces. Moreover, some extensions of the above results for different types of multivalued generalized
contractions (Reich type, Ćirić type, ., see [17]) can be given by applying the same method.

4. Coupled fixed point theorems

We will start this section by recalling some useful notion and results.

Definition 4.1 ([18]). Let (X,⪯) a partially ordered set and G : X ×X → P (X). We say that G has the
strict mixed monotone property with respect to the partial order ” ⪯ ”, if the following implications holds:

1. x0 ⪯ x1 ⇒ G(x0, y) ≤st G(x1, y), ∀y ∈ X.

2. y0 ⪰ y1 ⇒ G(x, y0) ≤st G(x, y1), ∀x ∈ X.

Remark 4.2. Let (X, d) be a b-metric space with constant s ≥ 1 and Z := X × X. Then the functional
d̃ : Z × Z → R+ defined by,

d̃((x, y), (u, v)) ≤ d(x, u) + d(y, v), for all (x, y), (u, v) ∈ Z,

is a b-metric on Z with the same constant s ≥ 1 and if (X, d) is a complete b-metric space, then (Z, d̃) is a
complete b-metric space, too.
Moreover, for x, y ∈ X, A,B,U, V ∈ P (X), we have,

Dd̃((x, y), A×B) = Dd(x,A) +Dd(y,B),

ρd̃(U × V,A×B) = ρd(U,A) + ρd(V,B),

Hd̃(U × V,A×B) ≤ Hd(U,A) +Hd(V,B)

and
H+

d̃
(U × V,A×B) = H+

d (U,A) +H+
d (V,B).

Additionally, by the properties of the gap functional Dd, if (x, y) ∈ X ×X and A,B ∈ Pcl(X), then,

Dd̃((x, y), A×B) = 0 if and only if (x, y) ∈ A×B.
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The first main result of this section is the following theorem.

Theorem 4.3. Let (X,⪯, d) be an ordered b-metric space with constant s ≥ 1 such that, the b-metric d is
complete. Let G : X × X → P (X) be a multi-valued operator having the strict mixed monotone property
with respect to ” ⪯ ” and G has closed graph. Assume that:

(i) there exists k ∈
(
0,

1

s

)
such that,

ρd(G(x, y), G(u, v)) + ρd(G(y, x), G(v, u)) ≤ k[d(x, u) + d(y, v)], ∀x ⪯ u and y ⪰ v,

(ii) there exist (x0, y0) ∈ X ×X and (x1, y1) ∈ G(x0, y0)×G(y0, x0) such that x0 ⪯ x1 and y0 ⪰ y1.

Then, the following conclusions hold:

(a) there exist x∗, y∗ ∈ X and there exist two sequences (xn)n∈N and (yn)n∈N in X with,{
xn+1 ∈ G(xn, yn),
yn+1 ∈ G(yn, xn),

for all n ∈ N such that xn → x∗, yn → y∗ as n→ ∞ and{
x∗ ∈ G(x∗, y∗),
y∗ ∈ G(y∗, x∗).

(b) If in addition, the b-metric d is continuous, then we have the following estimation holds,

d(xn, x
∗) + d(yn, y

∗) ≤
skn

1− sk
[d(x0, x1) + d(y0, y1)], for all n ∈ N.

Proof. (a) We denote by Z = X×X. Let (x0, y0) ∈ Z and (x1, y1) ∈ G(x0, y0)×G(y0, x0) such that x0 ⪯ x1
and y0 ⪰ y1. Using Lemma 2.5 we obtain that for any q > 1, there exists (x2, y2) ∈ G(x1, y1) × G(y1, x1)
such that, {

d(x1, x2) ≤ qρ(G(x0, y0), G(x1, y1)),
d(y1, y2) ≤ qρ(G(y0, x0), G(y1, x1)).

Then,

d(x1, x2) + d(y1, y2) ≤ q[ρ(G(x0, y0), G(x1, y1)) + ρ(G(y0, x0), G(y1, x1))]

≤ qk[d(x0, x1) + d(y0, y1)].

From Lemma 2.5, we get that there exists (x3, y3) ∈ G(x2, y2)×G(y2, x2) such that,{
d(x2, x3) ≤ qρ(G(x1, y1), G(x2, y2)),
d(y2, y3) ≤ qρ(G(y1, x1), G(y2, x2)).

Now we want to prove that (x1, y1) ≤p (x2, y2) which is equivalent to show that x1 ⪯ x2 and y1 ⪰ y2. From
x0 ⪯ x1 we have that G(x0, y) ≤st G(x1, y), for all y ∈ X. If we take y = y0, then we obtain,

G(x0, y0) ≤st G(x1, y0). (4.1)

From y0 ⪰ y1 we have that G(x, y0) ≤st G(x, y1), for all x ∈ X. If we take x = x1, then we obtain,

G(x1, y0) ≤st G(x1, y1). (4.2)

From (4.1) and (4.2) we obtain that G(x0, y0) ≤st G(x1, y1). Thus, x1 ⪯ x2. From x0 ⪯ x1, we have that
G(y, x0) ≥st G(y, x1), for all y ∈ X. If we take y = y0, then we obtain,

G(y0, x0) ≥st G(y0, x1). (4.3)
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From y0 ⪰ y1 we have that G(y0, x) ≥st G(y1, x), for all x ∈ X. If we take x = x0, then we obtain,

G(y0, x1) ≥st G(y1, x1). (4.4)

From (4.3) and (4.4) we obtain that G(y0, x0) ≥st G(y1, x1). Thus, y1 ⪰ y2. Then,

d(x2, x3) + d(y2, y3) = q[ρ(G(x1, y1), G(x2, y2)) + ρ(G(y1, x1)) +G(y2, x2)]

≤ qk[d(x1, x2) + d(y1, y2)]

≤ (qk)2[d(x0, x1) + d(y0, y1)].

By this procedure, we obtain two sequences (xn)n∈N and (yn)n∈N in X with the following properties:
(1) xn ⪯ xn+1 and yn ≥ yn+1, for all n ≥ 0.
(2) xn+1 ∈ G(xn, yn) and yn+1 ∈ G(yn, xn), for all n ≥ 0.
(3) d(xn, xn+1) + d(yn, yn+1) ≤ (qk)n[d(x0, x1) + d(y0, y1)].
Let d̃ : Z × Z → R+ be a functional defined by,

d̃((x, y), (u, v)) = d(x, u) + d(y, v), for all (x, y), (u, v) ∈ Z.

Consider z0 = (x0, y0) ∈ Z and zn = (xn, yn) ∈ Z, then the relation (3) is equivalent with,

d̃((xn, yn), (xn+1, yn+1)) ≤ (qk)nd̃((x0, y0), (x1, y1)) ⇔

⇔ d̃(zn, zn+1) ≤ (qk)nd(z0, z1), for all n ∈ N.

We choose 1 < q <
1

ks
and we must to show that zn = (xn, yn) ∈ Z is a Cauchy sequence on (Z, d̃). We

have,

d̃(zn, zn+p) ≤ sd̃(zn, zn+1) + s2d̃(zn+1, zn+2) + ...+ sp−1d̃(zn+p−1, zn+p)

≤ s(qk)nd̃(z0, z1) + s2(qk)n+1d̃(z0, z1) + ...+ sp−1(qk)n+p−1d̃(z0, z1)

≤ s(qk)n[1 + sqk + ...+ (sqk)p−1]d̃(z0, z1)

= s(qk)n
1− (sqk)p

1− sqk
d̃(z0, z1) ≤

s(qk)n

1− sqk
d̃(z0, z1).

Hence,

d̃(zn, zn+p) ≤
s(qk)n

1− sqk
d̃(z0, z1) → 0 as n→ ∞, ∀p ∈ N∗. (4.5)

Thus (zn)n∈N is a Cauchy sequence in Z. Since (Z, d̃) is a complete b-metric space, there exists
z∗ = (x∗, y∗) ∈ Z such that limn→∞ zn = z∗, therefore limn→∞ xn = x∗ and limn→∞ yn = y∗.
Now, we will prove that (x∗, y∗) ∈ Z is a coupled fixed point of G i.e.,{

x∗ ∈ G(x∗, y∗),
y∗ ∈ G(y∗, x∗).

Consider T : Z → Pcl(Z) a multi-valued operator defined by,

T (x, y) = G(x, y)×G(y, x), ∀(x, y) ∈ Z.

By definition of d̃ we have that,

Dd̃(z
∗, T (z∗)) = Dd̃((x

∗, y∗), G(x∗, y∗)×G(y∗, x∗))

= Dd(x
∗, G(x∗, y∗)) +Dd(y

∗, G(y∗, x∗))

≤ s[d(x∗, xn+1) +Dd(xn+1, G(x
∗, y∗)] + s[d(y∗, yn+1) +Dd(yn+1, G(y

∗, x∗)]

≤ s[d(x∗, xn+1) + d(y∗, yn+1)] + s[ρ(G(xn, yn), G(x
∗, y∗)) + ρ(G(yn, xn), G(y

∗, x∗))]

≤ s[d(x∗, xn+1) + d(y∗, yn+1)] + sk[d(xn, x
∗) + d(yn, y

∗)] → 0 as n→ ∞.
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Since G has closed values, we obtain that T has closed values too. As a consequence, z∗ ∈ T (z∗), i.e.,
(x∗, y∗) ∈ G(x∗, y∗)×G(y∗, x∗). This means that x∗ ∈ G(x∗, y∗) and y∗ ∈ G(y∗, x∗).
(b) Using (4.5) we have,

d̃(zn, zn+p) = d̃((xn, yn), (xn+p, yn+p)) = d(xn, xn+p) + d(yn, yn+p)

≤
s(qk)n

1− sqk
[d(x0, x1) + d(y0, y1)].

Since d is a continuous b-metric and 1 < q <
1

sk
is arbitrary chosen, letting p→ ∞ and q ↘ 1, we get,

d(xn, x
∗) + d(yn, y

∗) ≤
skn

1− sk
[d(x0, x1) + d(y0, y1)], for all n ∈ N.

Remark 4.4. Notice that the contraction condition (i) from Theorem 4.3 can be re-written, using the
functional H+, as follows:

H+
d (T (x, y), T (u, v)) ≤ 2k(d(x, u) + d(y, v)), ∀(x, y), (u, v) ∈ X ×X with (x, y) ≤p (u, v).

Remark 4.5. If instead of the hypothesis that the triple (X,⪯, d) is a complete ordered b-metric space, we
only assume that X is a nonempty set, ⪯ is a partially ordering on X and d is a complete b-metric with
constant s ≥ 1, then the conclusions of the above theorem hold, if additionally, the graph of G is a closed
set.

The following result is about the uniqueness of the coupled fixed point.

Theorem 4.6. In addition to the hypotheses of Theorem (4.3) we suppose that,

(i) there exists (x∗, y∗) ∈ X ×X such that,{
G(x∗, y∗) = {x∗},
G(y∗, x∗) = {y∗},

(ii) for any solution (x, y) of the coupled fixed point problem (P1) we have x ≤ x∗ and y ≥ y∗

or (x, y) ≤p (x
∗, y∗).

Then, we obtain that the coupled fixed point problem (P1) has an unique solution.

Proof. Let (x∗, y∗) ∈ X ×X such that, {
G(x∗, y∗) = {x∗},
G(y∗, x∗) = {y∗}.

We suppose that there exists (x, y) ∈ X ×X such that,{
x ∈ G(x, y),
y ∈ G(y, x),

with (x, y) ≤p (x
∗, y∗).

We denotes by Z = X ×X and consider the functional d̃ : Z × Z → R+ defined by,

d̃((x, y), (u, v)) = d(x, u) + d(y, v).
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Then,

d̃((x, y), (x∗, y∗)) = Dd̃((x, y), G(x
∗, y∗)×G(y∗, x∗))

= Dd(x,G(x
∗, y∗)) +Dd(y,G(y

∗, x∗))

≤ ρ(G(x, y), G(x∗, y∗)) + ρ(G(y, x), G(y∗, x∗))

≤ k[d(x, x∗) + d(y, y∗)]

= kd̃((x, y), (x∗, y∗)).

Thus (1− k)d̃((x, y), (x∗, y∗)) ≤ 0, which means that d̃((x, y), (x∗, y∗)) = 0 and (x, y) = (x∗, y∗).

Theorem 4.7. We suppose that all the hypotheses of Theorem (4.6) take place and x∗ ≤ y∗ or y∗ ≤ x∗

where (x∗, y∗) is the unique coupled fixed point of G. Then x∗ = y∗ i.e G(x∗, x∗) = {x∗}.

Proof. From Theorem 4.6 we have that there exists (x∗, y∗) ∈ X ×X such that,{
G(x∗, y∗) = {x∗},
G(y∗, x∗) = {y∗}.

Let x∗ ≤ y∗ then (x∗, y∗) ≤p (y
∗, x∗). We will prove now that G has a unique fixed point.

d(x∗, y∗) =
1

2
[d(x∗, y∗) + d(y∗, x∗)]

=
1

2
[Dd(x

∗, G(y∗, x∗)) +Dd(y
∗, G(x∗, y∗))]

≤
1

2
ρ(G(x∗, y∗), G(y∗, x∗)) +

1

2
ρ(G(y∗, x∗), G(x∗, y∗))

≤
1

2
k[d(x∗, y∗) + d(y∗, x∗)] = kd(x∗, y∗).

Thus (1− k)d(x∗, y∗) ≤ 0 and we get to the conclusion that d(x∗, y∗) = 0, i.e., x∗ = y∗.

If the contraction condition withe respect to the excess functional is assumed for every elements x, y ∈ X,
then no monotonicity assumptions are needed for G. Hence, we get the following result.

Theorem 4.8. Let (X, d) be a complete b-metric space with constant s ≥ 1. Let G : X ×X → Pcl(X) be a
multi-valued operator for which there exists k ∈ (0, 1) such that,

ρd(G(x, y), G(u, v)) + ρd(G(y, x), G(v, u)) ≤ k[d(x, u) + d(y, v)] ,∀(x, y), (u, v) ∈ X ×X.

Then, the following conclusions hold:

(a) CFix(G) ̸= ∅ and for any initial point (x0, y0) ∈ X ×X, the sequences (xn)n∈N and (yn)n∈N defined
by, {

xn+1 ∈ G(xn, yn),
yn+1 ∈ G(yn, xn),

converge to x∗ and respectively to y∗ as n→ ∞ where,{
x∗ ∈ G(x∗, y∗),
y∗ ∈ G(y∗, x∗).

(b) In particular, if the b-metric d is continuous, then we have the following estimation:

d(xn, x
∗) + d(yn, y

∗) ≤
skn

1− sk
[d(x0, x1) + d(y0, y1)].
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(c) If additionally, there exists a pair (u∗, v∗) ∈ X ×X such that,{
G(u∗, v∗) = {u∗},
G(v∗, u∗) = {v∗},

then CFix(G) = {(x∗, y∗)}.

Proof. We denote by Z = X ×X and consider the functional d̃ : Z × Z → R+ defined by,

d̃((x, y), (u, v)) = d(x, u) + d(y, v).

Then, d̃ is a b-metric on Z with the same constant s ≥ 1. Let T : Z → P (Z) defined by
T (x, y) = G(x, y)×G(y, x) for all (x, y) ∈ Z. The multi-valued operator T is a contraction (with respect to
ρd̃) on (Z, d̃). Let z = (x, y), w = (u, v) ∈ Z. Then, we have,

ρd̃(T (z), T (w)) = ρd̃(G(x, y)×G(y, x), G(u, v)×G(v, u))

= ρd(G(x, y), G(u, v) + ρd(G(y, x), G(v, u)))

≤ k[d(x, u) + d(y, v)] = kd̃(z, w).

Thus, by Theorem 3.7 we have that there exists (x∗, y∗) ∈ Z such that (x∗, y∗) ∈ T (x∗, y∗) i.e
(x∗, y∗) ∈ G(x∗, y∗) × G(y∗, x∗). Thus CFix(G) ̸= ∅. Using Theorem 3.7 we also obtain that there ex-
ists a sequence (zn)n∈N ⊂ Z of successive approximation for T starting from any point (z0, z1) ∈ Graph(T ),
which converges to a fixed point (x∗, y∗) of T , i.e., (xn, yn) → (x∗, y∗) as n → ∞. From Theorem 3.7, we
have that,

d(xn, x
∗) + d(yn, x

∗) ≤
skn

1− sk
[d(x0, x1) + d(y0, y1)], ∀n ∈ N,

or equivalently

d̃(xn, yn), (x
∗, y∗) ≤

skn

1− sk
d̃((x0, y0), (x1, y1)), ∀n ∈ N.

(b) Let (u∗, v∗) ∈ Z such that, {
G(u∗, v∗) = {u∗},
G(v∗, u∗) = {v∗}.

This means that {(u∗, v∗)} = G(u∗, v∗) × G(v∗, u∗) and {(u∗, v∗)} = F (u∗, v∗). Thus, SFix(T ) ̸= ∅. From
Theorem 3.7 we have that Fix(T ) = SFix(T ) = {(x∗, y∗)}, which means that T has a unique fixed point
in Z. In conclusion, G has also a unique coupled fixed point in Z.

In the next part of this section, we will present some proprieties of the coupled fixed point problem (P1).
The first one is the data dependence problem for the coupled fixed point problem (P1).

Theorem 4.9. Let (X, d) be a complete b-metric space with constant s ≥ 1 and let G : X ×X → Pcl(X),
S : X ×X → P (X) be two multi-valued operators. We suppose that:

(i) there exists k ∈
(
0,

1

s

)
such that,

ρd(G(x, y), G(u, v)) + ρd(G(y, x), G(v, u)) ≤ k[d(x, u) + d(y, v)], ∀(x, y), (u, v) ∈ X ×X,

(ii) there exists (x∗, y∗) ∈ X ×X such that,{
G(u∗, v∗) = {u∗},
G(v∗, u∗) = {v∗},
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(iii) there exists (u∗, v∗) ∈ X ×X such that, {
u∗ ∈ S(u∗, v∗),
v∗ ∈ S(v∗, u∗),

(iv) there exists η > 0 such that ρd(G(x, y), S(x, y)) ≤ η, for all (x, y) ∈ X ×X.

Then

ρd̃(CFix(S), CF ix(G)) ≤
2sη

1− sk
,

where d̃((x, y), (u, v)) = d(x, u) + d(y, v), ∀(x, y), (u, v) ∈ X ×X.

Proof. Let (u∗, v∗) ∈ X ×X such that, {
u∗ ∈ S(u∗, v∗),
v∗ ∈ S(v∗, u∗),

and (x∗, y∗) ∈ X ×X such that, {
G(x∗, y∗) = {x∗},
G(y∗, x∗) = {y∗}.

We denote by Z = X ×X and consider the functional d̃ : X ×X → R+ defined by,

d̃((x, y), (u, v)) = d(x, u) + d(y, v), ∀(x, y), (u, v) ∈ Z.

We have,

d̃((u∗, v∗), (x∗, y∗)) = Dd̃((u
∗, v∗), G(x∗, y∗)×G(y∗, x∗))

= Dd(u
∗, G(x∗, y∗)) +Dd(v

∗, G(y∗, x∗))

= Dd(G(x
∗, y∗), u∗) +Dd(G(y

∗, x∗), v∗)

≤ s[ρd(G(x
∗, y∗), G(u∗, v∗)) +Dd(G(u

∗, v∗), u∗)]

+ s[ρd(G(y
∗, x∗), G(v∗, u∗)) +Dd(G(v

∗, u∗), v∗)]

≤ s[ρd(G(x
∗, y∗), G(u∗, v∗)) + ρd(G(y

∗, x∗), G(v∗, u∗))]

+ s[ρd(G(u
∗, v∗), S(u∗, v∗)) + ρd(G(v

∗, u∗), S(v∗, u∗))]

≤ sk[d(x∗, u∗) + d(y∗, v∗)] + 2ηs.

Then,

d̃((x∗, y∗), (u∗, v∗)) ≤
2ηs

1− sk
.

Thus, Dd̃((u
∗, v∗), CF ix(G)) ≤

2ηs

1− sk
. Since (u∗, v∗) ∈ CFix(S) are arbitrary chosen, we obtain that,

ρd̃(CFix(S), CF ix(G)) ≤
2sη

1− sk
.

The second problem we intend to study is the well-posedness of the coupled fixed point problem.

Definition 4.10. We consider the coupled fixed point problem (P1). By definition, (P1) is well-posed for
G with respect to Dd if:

(i) CFix(G) = {w∗}, where w∗ = (u∗, v∗) ∈ X ×X,



Iulia Coroian, Gabriela Petruşel, Commun. Nonlinear Anal. 1 (2016), 42–62 54

(ii) if there exists a sequence wn = (un, vn) ∈ X ×X with,{
Dd(un, G(un, vn)) → 0,
Dd(vn, G(vn, un)) → 0,

then d(un, u
∗) + d(vn, v

∗) → 0 as n→ ∞.

Theorem 4.11. We suppose that all the hypotheses of Theorem (4.8) take place. Then the coupled fixed
point problem (P1) is well-posed for G with respect to Dd.

Proof. Since the multi-valued operator G satisfies the hypotheses of Theorem 4.8, we get that G has a
unique coupled fixed point, i.e., CFix(G) = {w∗} where w∗ = (u∗, v∗) ∈ X ×X. Then we have,{

G(u∗, v∗) ∈ {u∗},
G(v∗, u∗) ∈ {v∗}.

Let wn = (un, vn) ⊂ X ×X, with, {
Dd(un, G(un, vn)) → 0,
Dd(vn, G(vn, un)) → 0,

as n→ ∞. Then we have,

d(un, x
∗) + d(vn, v

∗) = Dd(un, G(u
∗, v∗)) +Dd(vn, G(v

∗, u∗))

≤ s[Dd(un, G(un, vn)) + ρd(G(un, vn), G(u
∗, v∗))]

+ s[Dd(vn, G(vn, un)) + ρd(G(vn, un), G(v
∗, u∗))]

≤ sk[d(un, u
∗) + d(vn, v

∗)] + s[Dd(un, G(un, vn)) +Dd(vn, G(vnun))].

Hence,

d(un, u
∗) + d(vn, v

∗) ≤ s

1− sk
[Dd(un, G(un, vn)) +Dd(vn, G(vn, un))] → 0 as n→ ∞.

Now we will present the Ulam-Hyers property of the coupled fixed point problem.

Definition 4.12. Let (X, d) be a b-metric space with constant s ≥ 1 and let G : X × X → P (X) be a
multi-valued operator. Let d̃ be any b-metric on X × X generated by d. Let us consider the system of
inclusions, {

x ∈ G(x, y),
y ∈ G(y, x),

(4.6)

and the inequality,

Dd(x,G(x, y)) +Dd(y,G(x, y)) ≤ ϵ, (4.7)

where ϵ > 0 and (x, y) ∈ X ×X.

By definition, the system of inclusions (4.6) is called Ulam-Hyers stable if and only if, there exists a
function ψ : R+ → R+ increasing, continuous in 0 with ψ(0) = 0, such that for each ϵ > 0 and for each
solution (u∗, v∗) ∈ X ×X of the inequality (4.7), there exists a solution (x∗, y∗) ∈ X ×X of (4.6) such that,

d(u∗, v∗) + d(v∗, y∗) ≤ ψ(ϵ) ⇔ d̃((x∗, y∗), (u∗, v∗)) ≤ ψ(ϵ).

Theorem 4.13. Let G : X × X → Pcl(X) be a multi-valued operator which verifies the hypotheses of
Theorem (4.8). Then the system of inclusions (4.6) is Ulam-Hyers stable.
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Proof. From Theorem 4.8 we have that G has a unique coupled fixed point (x∗, y∗) ∈ X ×X such that,{
G(x∗, y∗) ∈ {x∗},
G(y∗, x∗) ∈ {y∗}. .

Let ϵ > 0 and (u∗, v∗) ∈ X ×X be a ϵ-solution of the coupled fixed point problem (4.6), i.e., a solution of
the inequality (4.7). Then, we have Dd(u

∗, G(u∗, v∗)) +Dd(v
∗, G(v∗, u∗)) ≤ ϵ. Hence, we get,

d(u∗, x∗) + d(v∗, y∗) = Dd(u
∗, G(x∗, y∗)) +Dd(v6∗, G(y∗, x∗))

≤ s[Dd(u
∗, G(u∗, v∗)) + ρd(G(u

∗, v∗), G(x∗, y∗))]

+ s[Dd(v
∗, G(v∗, u∗)) + ρd(G(v

∗, u∗), G(y∗, x∗))]

≤ sk[d(u∗, x∗) + d(v∗, y∗)] + s[Dd(u
∗, G(u∗, v∗)) +Dd(v

∗, G(v∗, u∗))].

Thus,

d(u∗, x∗) + d(v∗, y∗) ≤
s

1− sk
· ϵ.

Therefore, if we consider ψ : R+ → R+, given by ψ(t) = ct (with c =
s

1− sk
> 0), we can conclude that the

system of inclusion (4.6) is Ulam-Hyers stable.

For the next result, we need the following theorem (known as Cauchy’s Lemma).

Lemma 4.14 (Cauchy’s Lemma). Let (an)n∈N and (bn)n∈N be two sequences of non-negative real numbers,

such that
∞∑
p=0

ap < +∞ and lim
n→∞

bn = 0. Then, lim
n→∞

( n∑
p=0

an−pbp

)
= 0.

Using the above result and the global existence result for the coupled fixed point problem (see Theorem
4.8), we can prove the limit shadowing property of the coupled fixed point problem (P1).

Definition 4.15. Let (X, d) be a b-metric space with constant s ≥ 1 and G : X ×X → P (X) be a multi-
valued operator. Let d̃ be any b-metric generated by d. By definition, the coupled fixed problem (P1) has
the limit shadowing property if, for any sequence (xn, yn)n∈N in X ×X for which,

Dd̃((xn+1, yn+1), G(xn, yn)×G(yn, xn)) → 0 as n→ ∞,

there exists a sequence (un, vn)n∈N in X ×X such that,

d̃((xn, yn), (un, vn)) → 0, as n→ ∞.

Theorem 4.16. Let (X, d) be a b-metric space with constant s ≥ 1 and G : X ×X → Pcl(X) be a multi-
valued operator which verifies all the hypotheses of Theorem (4.8). Then, the coupled fixed point problem
(P1) has the limit shadowing property.

Proof. By Theorem 4.8 we get that CFix(G) = {x∗, y∗} and for any initial point (u0, v0) ∈ X ×X, there
exist two sequence (un)nN and (vn)nN in X with un+1 ∈ G(un, vn) and vn+1 ∈ G(vn, un) for all n ∈ N,
such that (un)n∈N → x∗, (vn)n∈N → y∗ as n → ∞. We denote Z = X × X and consider the functional
d̃ : Z × Z → R+ defined by,

d̃((x, y), (u, v)) = d(x, u) + d(y, v).

We know that if d is a b-metric with constant s ≥ 1 then d̃ is a b-metric with the same constant s. Let
(xn, yn)n∈N be a sequence in Z such that,

Dd̃((xn+1, yn+1), G(xn, yn)×G(yn, xn)) → 0 as n→ ∞.
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This also means that,
Dd((xn+1, G(xn, yn)) +Dd(yn, G(yn, xn)) → 0, as n→ ∞.

Thus,
d̃((xn+1, yn+1), (un+1, vn+1)) ≤ s[d̃((xn+1, yn+1), (x

∗, y∗)) + d̃((x∗, y∗), (un+1, vn+1))].
Next, we can write,

d̃((xn+1, yn+1), (x
∗, y∗)) = Dd̃((xn+1, yn+1), G(x

∗, y∗)×G(y∗, x∗))

= Dd(xn+1, G(x
∗, y∗)) +Dd(yn+1, G(y

∗, x∗))

≤ s[Dd(xn+1, G(xn, yn)) + ρd(G(xn, yn), G(x
∗, y∗))]

+ s[Dd(yn+1, G(yn, xn))] + ρd(G(yn, xn), G(y
∗, x∗))

≤ s[Dd(xn+1, G(xn, yn)) +Dd(yn+1), G(yn, xn))] + sk[d(xn, x
∗) + d(yn, y

∗)]

= s[Dd(xn+1, G(xn, yn)) +Dd(yn+1, G(yn, xn))] + skd̃((xn, yn), (x
∗, y∗))

≤ sk{s[Dd(xn, G(xn−1, yn−1)) +Dd(yn, G(yn−1, xn−1))] + skd̃((xn−1, yn−1), (x
∗, y∗))}

+ s[Dd(xn+1, G(xn, yn)) +Dd(yn+1), G(yn, xn))]

≤ ... ≤

≤ s

n∑
p=0

(sk)n−p[Dd(xp+1, G(xp, yp)) +Dd(yp+1, G(yp, xp))] + (sk)n+1d̃((x0, y0), (x
∗, y∗))

By Cauchy’s Lemma we obtain that,

s

n∑
p=0

(sk)n−p[Dd(xp+1, G(xp, yp)) +Dd(yp+1, G(yp, xp))] → 0 as n→ ∞.

Thus we obtain that,

d̃((xn+1, yn+1), (x
∗, y∗)) → 0 as n→ ∞.

Then,

d̃((xn+1, yn+1), (un+1, vn+1)) → 0 as n→ ∞,

and so, we get the final conclusion,

d(xn, un) + d(yn, vn) → 0 as n→ ∞.

5. Applications

The purpose of this section is to give some applications of the previous results.
Let us consider first the following system of integral inclusions,

x(t) ∈
t∫
0

K(s, x(s), y(s))ds+ g(t),

y(t) ∈
t∫
0

K(s, y(s), x(s))ds+ g(t),

for t ∈ [0, T ], (5.1)

where g : [0, T ] → R and K : [0, T ]×Rn×Rn → P (Rn) are operators satisfying some appropriate conditions.
A solution of the above system is a pair (x, y) ∈ C([0, T ],Rn)× C([0, T ],Rn) satisfying the above relations
for all t ∈ [0, T ]. We consider X := C([0, T ],Rn) endowed with the partial order relation,

x ≤C y ⇔ x(t) ≤ y(t), for all t ∈ [0, T ],
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where ” ≤ ” is the component wise ordering relation on Rn. We will also denote by | · | a norm in Rn.
We also consider (for p ∈ N, p ≥ 2 an even number) the following functional,

d(x, y) := max
t∈[0,T ]

[(x(t)− y(t))pe−τt].

Notice that d is a b-metric, for any τ > 0 arbitrary chosen. Indeed, it is easy to check that the first conditions
are satisfied for all x, y ∈ X. We show that the triangle’s inequality is verified too. Using Hölder’s inequality
we obtain that,

(x(t)− y(t))p ≤ 2
p
q [(x(t)− z(t))p + (z(t)− y(t))p] · e−τt · eτt

≤ 2
p
q max
t∈[0,T ]

((x(t)− z(t))peτt + (z(t)− y(t))peτt) · eτt

= 2
p
q (d(x, z) + d(y, z)) · eτt,

with
1

p
+

1

q
= 1.

After a multiplication with e−τt and taking then maximum over t ∈ [0, T ] we get that,

d(x, y) ≤ 2p−1(d(x, z) + d(z, y)).

Notice also that the triple (X,≤, d) is an ordered metric space.
Now, we can prove the following existence result.

Theorem 5.1. Consider the integral system (5.1). We suppose that:

(i) g : [0, T ] → R is a continuous function and K : [0, T ]× Rn × Rn → Rn is Lebesgue measurable in the
first variable and jointly H|·|- continuous in the last two variables.

(ii) K is integrably bounded, i.e., there exists a mapping r ∈ L1[0, T ] such that for each (s, u, v) ∈ [0, T ]×
Rn × Rn and for any w ∈ K(s, u, v), we have |w| ≤ r(t), a.e. t ∈ [0, T ].

(iii) K(s, ·, ·) has the strict mixed monotone property with respect to the last two variables, for all s ∈ [0, T ].

(iv) There exist α, β ∈ L1([0, T ],R+) such that, for each s ∈ [0, T ], we have,

ρ|·|(K(s, x, y),K(s, u, v)) ≤ α(s)|x− u|+ β(s)|y − v|, ∀x, y, u, v ∈ Rn,

with (x ≤ u, y ≥ v) or (x ≤ u, y ≤ v).

(v) There exist x0, y0 ∈ C[0, T ] and two measurable selections fx0,y0 : [0, T ] → Rn of K(·, x0(·), y0(·)) and
fy0,x0 : [0, T ] → Rn of K(·, y0(·), x0(·)), such that,

x0(t) ≤ g(t) +
t∫
0

K(s, x0(s), y0(s))fx0,y0(s)ds,

y0(t) ≥ g(t) +
t∫
0

K(s, y0(s), x0(s))fy0,x0(s)ds,

(5.2)

or 
x0(t) ≥ g(t) +

t∫
0

K(s, x0(s), y0(s))fx0,y0(s)ds,

y0(t) ≤ g(t) +
t∫
0

K(s, x0(s), y0(s))fy0,x0(s)ds,

(5.3)

for all t ∈ [0, T ].

Then, there exists at least one solution (x∗, y∗) of the system (5.1).
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Proof. We will work in the b- metric space (X, d), with X = C([0, T ],Rn) and

d(x, y) := max
t∈[0,T ]

[(x(t)− y(t))pe−τt] = ||(x− y)p||B.

We can prove that all the assumptions of Theorem 4.3 are satisfied. For this purpose, we define
S : X ×X → P (X), (x, y) → S(x, y) given by,

S(x, y) := {s ∈ X with s(t) := g(t) +

t∫
0

fx,y(s)ds|fx,y ∈ SK(·,x(·),y(·))},

where SK(·,x(·),y(·)) denotes the set of all measurable selections of the multi-valued operator
s → K(s, x(s), y(s)). Notice that, by (i), for each measurable mappings x, y : [0, T ] → R, the multi-valued
operatorK(·, x(·), y(·)) is Lebesgue measurable (see, for example, [18]). Hence, by Kuratowski and Ryll-
Nardzewski selection theorem, we obtain that SK(·,x(·),y(·)) is nonempty for every x, y ∈ X and by (ii), we
have that SK(·,x(·),y(·)) ⊆ L1([0, T ],Rn). Thus, S is well defined. Then, the system (5.1) can be written as a
coupled fixed point problem for S as follows, {

x ∈ S(x, y),
y ∈ S(y, x).

(5.4)

We will show that S satisfies all the assumptions of Theorem 4.3. We will show first that S has closed
values. Indeed, let x, y ∈ X and let (sn) be a sequence in S(x, y) with sn → s in (X, d). We have to show
that s ∈ S(x, y), i.e., there exists fx,y ∈ SK(·,x(·),y(·)) such that,

s(t) = g(t) +

∫ t

0
fx,y(s)ds.

Since sn ∈ S(x, y), there exists f
(n)
x,y ∈ SK(·,x(·),y(·)) such that,

sn(t) = g(t) +

∫ t

0
f (n)x,y (s)ds, for n ∈ N, t ∈ [0, T ].

Since (sn) pointwise converges to s in X, for all t, we have sn(t) → s(t). Since,

sn(t) ∈ g(t) +

∫ t

0
K(s, x(s), y(s))ds, t ∈ [0, T ].

(here the multi-valued integral is in the sense of Aumann [13]), using the fact that the set g(t)+
∫ t
0 K(s, x(s), y(s))ds

is closed (in fact it is compact, see [13]) we get that,

s(t) ∈ g(t) +

∫ t

0
K(s, x(s), y(s))ds, t ∈ [0, T ].

Thus, there exists fx,y ∈ SK(·,x(·),y(·)) such that,

s(t) = g(t) +

∫ t

0
fx,y(s)ds.

In the next step, we show that there exists k ∈ R∗
+ with k <

1

s
, such that,

ρ(S(x, y), S(u, v)) + ρ(S(y, x), S(v, u)) ≤ k[d(x, u) + d(y, v)],
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for all (x ≤ u and y ≥ v) or (u ≤ x and v ≥ y).
For this purpose, let (for example) x ≤ u and y ≥ v. First, we will prove that for each w ∈ S(x, y), there
exists z ∈ S(u, v) such that,

d(w, z) ≤ k(d(x, u) + d(y, v)).

Without the loss of generality, we can suppose that,

ρ|·|(K(s, x, y),K(s, u, v)) < α(s)|x− u|+ β(s)|y − v|, for (x, y) ̸= (u, v).

If w ∈ S(x, y), then there exists fx,y ∈ SK(·,x(·),y(·)) such that,

w(t) = g(t) +

t∫
0

K(s, x(s), y(s))fx,y(s)ds, for a.e. t ∈ [0, T ].

Since fx,y(t) ∈ K(t, x(t), y(t)) for t ∈ [0, T ], we can find r ∈ K(t, u(t), v(t)) such that,

|fx,y(t)− r| ≤ α(t)|x(t)− u(t)|+ β(t)|y(t)− v(t)|, for t ∈ [0, T ].

Thus, if we define the multi-valued operator Q(t) := F (t, u(t), v(t)) ∩R(t), where,

R(t) := {r||fx,y(t)− r| ≤ α(t)|x(t)− u(t)|+ β(t)|y(t)− v(t)|}.

Then, Q(t) is nonempty for t ∈ [0, T ] and Q is measurable (as an intersection of two measurable multi-
valued operators). Thus, Q has measurable selections and let fu,v(t) ∈ Q(t), for t ∈ [0, T ] such that
fu,v ∈ K(t, u(t), v(t)) and

|fx,y(t)− fu,v(t)| < α(t)|x(t)− u(t)|+ β(t)|y(t)− v(t)|.

Define now,

z(t) := g(t) +

t∫
0

K(s, x(s), y(s))fu,v(s)ds, ∀t ∈ [0, T ].
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Obviously, z ∈ S(u, v) and the following estimations holds,

|w(t)− z(t)|p ≤ [

t∫
0

K(s, x(s), y(s))|fx,y(s)− fu,v(s)|]p

≤ [

t∫
0

K(s, x(s), y(s))(α(s)|x(s)− u(s)|e−τseτs + β(s)|y(s)− v(s)|e−τseτs)ds]p

≤ [

t∫
0

K(s, x(s), y(s))α(s) p
√

||(x− u)p||Beτsds

+

t∫
0

K(s, x(s), y(s))β(s) p
√
||(y − v)p||Beτsds]p

≤ 2p−1[(

t∫
0

K(s, x(s), y(s))α(s) p
√

||(x− u)p||Beτsds)p

+ (

t∫
0

K(s, x(s), y(s))β(s) p
√

||(y − v)p||Beτsds)p]

= 2p−1[(

t∫
0

K(s, x(s), y(s))α(s)eτsds)p||(x− u)p||B

+ (

t∫
0

K(s, x(s), y(s))β(s)eτsds)p||(y − v)p||Beτsds]

≤ 2p−1[(

t∫
0

K(s, x(s), y(s))α(s)ds)p ·
t∫

0

epτsds||(x− u)p||B

+ (

t∫
0

K(s, x(s), y(s))β(s)ds)p ·
t∫

0

epτsds||(y − v)p||B]

≤ 2p−1
(

max
t∈[0,T ]

(

t∫
0

K(s, x(s), y(s))α(s)ds)p · ||(x− u)p||B

+ max
t∈[0,T ]

(

t∫
0

(K(s, x(s), y(s)))β(s)ds)p · ||(y − v)p||B
)
·
1

pτ
epτt.

After a multiplication with e−pτt and taking then maximum over t ∈ [0, T ] we get that,

||(w − z)p||B ≤
2p−1k

pτ
(||(x− u)p||B + ||(y − v)p||B),

where

k := max{ max
t∈[0,T ]

(

t∫
0

K(s, x(s), y(s))α(s)ds)p, max
t∈[0,T ]

(

t∫
0

K(s, x(s), y(s))β(s)ds)p}.
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Hence, we get that,

d(w, z) ≤
2p−1k

pτ
(d(x, u) + d(y, v)).

Now, from this proof and the analogous inequality obtained by interchanging the roles of x and y and
respectively u and v, we can prove that for each z ∈ S(y, x), there exists w ∈ S(v, u) such that,

d(z, w) ≤
2p−1k

pτ
(d(x, u) + d(y, v)).

Thus,

ρ(S(x, y), S(u, v)) + ρ(S(y, x), S(v, u)) ≤
2pk

pτ
[d(x, u) + d(y, v)].

Since τ > 0 is arbitrarily, we choose τ >
2pks

p
. Thus

2pk

pτ
<

1

s
and so all the assumption of Theorem 4.3 are

satisfied.

Now we can give an application of the previous result using the system of differential inclusions with
periodic values. Lets consider the following system:{

x′(t) ∈ F (t, x(t), y(t)), x(0) = x0,
y′(t) ∈ F (t, y(t), x(t)), y(0) = x0.

(5.5)

where x0 ∈ Rn and F : [0, T ]× Rn × Rn → P (Rn) is an operator satisfying some appropriate conditions.

We can observe that the system (5.5) is equivalent with the following system of integral inclusions:
x(t) ∈

t∫
0

F (s, x(s), y(s))ds+ x0, t ∈ [0, T ],

y(t) ∈
t∫
0

F (s, y(s), x(s))ds+ x0, t ∈ [0, T ].

(5.6)

By applying Theorem 5.1 to the above system, we immediately obtain the following existence result.

Theorem 5.2. Consider the integral system (5.5). We suppose that:

(i) F : [0, T ]× Rn × Rn → Rn is upper semicontiunous and Lebesgue measurable in the first variable and
jointly H|·|- continuous in the last two variables.

(ii) F is integrably bounded, i.e., there exists a mapping r ∈ L1[0, T ] such that for each (s, u, v) ∈ [0, T ]×
Rn × Rn and for any w ∈ F (s, u, v), we have |w| ≤ r(t), a.e. t ∈ [0, T ].

(iii) F (s, ·, ·) has the strict mixed monotone property with respect to the last two variables, for all s ∈ [0, T ].

(iv) There exist α, β ∈ L1([0, T ],R+) such that, for each s ∈ [0, T ], we have,

ρ|·|(F (s, x, y), F (s, u, v)) ≤ α(s)|x− u|+ β(s)|y − v|, ∀x, y, u, v ∈ Rn,

with (x ≤ u, y ≥ v) or (x ≤ u, y ≤ v).

(v) There exist x0, y0 ∈ C[0, T ] and two measurable selections fx0,y0 : [0, T ] → Rn of F (·, x0(·), y0(·)) and
fy0,x0 : [0, T ] → Rn of F (·, y0(·), x0(·)), such that,

x0(t) ≤ x0 +
t∫
0

F (s, x0(s), y0(s))fx0,y0(s)ds,

y0(t) ≥ x0 +
t∫
0

F (s, y0(s), x0(s))fy0,x0(s)ds,

(5.7)
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or 
x0(t) ≥ x0 +

t∫
0

F (s, x0(s), y0(s))fx0,y0(s)ds, t ∈ [0, T ],

y0(t) ≤ x0 +
t∫
0

F (s, x0(s), y0(s))fy0,x0(s)ds, t ∈ [0, T ],

(5.8)

Then, there exists at least one solution (x∗, y∗) of the system (5.6).
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[14] V. Lakshmikantham, L. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric

spaces, Nonlinear Anal., 70 (2009), 4341–4349. 1
[15] S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475–488. 1
[16] H. K. Pathak, N. Shahzad, A generalization of Nadlers fixed point theorem and its application to nonconvex

integral inclusions, Topol. Methods Nonlinear Anal., 41 (2013), 207–227. 3
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