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Abstract

In this paper, we assign a linear operator to the action of an amenable group on a compact metric space.
Then we extract the entropy of the action in terms of the eigenvalues of the operator. In this way we present
a spectral representation of the entropy of action of amenable groups. c©2016 All rights reserved.
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1. Introduction

In the classical ergodic theory, the concept of entropy is defined for measure-preserving Z-actions. The
definition of entropy is stated via different approaches, but with the same origin [1, 3, 4, 5, 10, 11, 12, 13,
16, 17, 19, 21].

Entropy of Z-actions is generalized to actions of general amenable groups. To have a nice entropy
theory for actions of amenable groups, the concept of Følner sequence is applied. A Følner sequence for
an action, is a sequence of finite sets which exhaust the space and do not move too much when acted on
by any group element. Many classical results for Z-actions, such as Shannon-McMillan-Brieman theorem
[2, 7, 15], Ergodic theorems [22, 24, 25, 26] and Rokhlin-Sinai results [14], are generalized for actions of
general amenable groups. Traditionally, entropy of an action is a nonnegative extended real number which
is invariant under isomorphism. For Z-actions it is replaced by linear operators on Banach spaces [10, 11].

In this paper, we consider an operator theory approach to the concept of entropy of action of amenable
groups. In this approach, we consider the entropy of the action as a linear operator on a Hilbert space,
rather than a nonnegative extended real number. In case of actions with finite entropy, the entropy of the
action of an amenable group is represented in terms of the eigenvalues of a compact positive operator on a
Hilbert space. This approach results in a spectral representation of the entropy of the action of an amenable
group.
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2. Preliminaries

In this section, we present some preliminary facts which will be used in the remaining of the paper.

2.1. Invariant measures, ergodic measures and ergodic decomposition

Definition 2.1. Suppose that G is a topological group acting on a probability space (X,B, µ) such that
the action G×X → X is measurable. The measure µ is called G-invariant if µ(gA) = µ(A) for any g ∈ G.

Definition 2.2. An invariant measure µ is called ergodic, if for any measurable set A we have,

∀g ∈ A, gA = A =⇒ µ(A) = 0 or µ(A) = 1.

The collection of all probability measures on B is denoted by M(X) and the collection of all G-invariant
measures on B is denoted by M(G,X). We also write E(G,X) for the collection of all ergodic measures.
It is known that M(X), equipped by the weak∗ topology, is a compact meatrizable space [23]. The proof of
the following theorem is similar to Theorem 6.10 of [23] .

Theorem 2.3. Suppose that G acts on a metric space X and µ is a G-invariant measure on BX –the
σ-algebra of Borel sets of X– then,

1. M(G,X) is a compact subset of M(X).

2. M(G,X) is convex.

3. ext(M(G,X)) = E(G,X), i.e., the collection of ergodic measures equals to the extreme points of the
collection of G-invariant measures.

In the following, we recall the Choquet’s representation Theorem.

Theorem 2.4 (Phelps [9]). Suppose that Y is a compact convex metrizable subset of a locally convex space E,
and that x0 ∈ Y . Then there exists a probability measure τ on Y which represents x0 and is supported by the
extreme points of Y , i.e., Ψ(x0) =

∫
Y Ψdτ for every continuous linear functional Ψ on E and τ(ext(Y )) = 1.

Let µ ∈ M(G,X) and f : X → R be a bounded measurable function. Since E(G,X) agrees with the
set of extreme points of M(X,φ), by applying Choquet’s representation Theorem for Y = M(G,X) and
Ψ(µ) =

∫
X fdµ, we will have the following corollary.

Corollary 2.5. Suppose that G is a topological group acting continuously on the compact metric space X.
Then for each µ ∈M(G,X), there is a unique measure τ = τµ on the Borel subsets of the compact metrizable
space M(G,X) such that τµ(E(G,X)) = 1 and∫

X
f(x)dµ(x) =

∫
E(G,X)

(∫
X
f(x)dm(x)

)
dτµ(m),

for every bounded measurable function f : X → R.

Under the assumptions of Corollary 2.5 we write µ =
∫
E(G,X)mdτµ(m) and it is called the ergodic

decomposition of µ.

2.2. Amenability, Følner sequences and entropy

Suppose that G is a countable and discrete group. There are many equivalent formulations for the
concept of amenability. In discrete case, one of the convenient definitions of amenability for discrete groups
is as follows.

Definition 2.6. A discrete group G is amenable, if for any finite set K ⊂ G and δ > 0, there is a finite set
F ⊂ G such that,

∀k ∈ K |F∆kF | < δ|F |.
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Such a set F is called (K, δ)-invariant. A sequence {Fn}n≥1 of finite subsets of G is called a Følner
sequence, if for any K, δ > 0 and for all large enough n, Fn is (K, δ)-invariant. Without loss of generality,
we may assume that |Fn| ≥ n.

Assume that G acts from the left on a measure space (X,B, µ) with µ(X) = 1. Let also µ preserves
the action of G on X. We have the following mean ergodic theorem for amenable groups. It may easily be
proved by the same method applied for Z-actions.

Theorem 2.7. If G is amenable and acts ergodically on (X,B, µ), then for any f ∈ L1(µ) and Følner
sequence {Fn}n≥1,

A(Fn, f)(x)n→∞ −→
∫
X
fdµ in L1(µ),

where

A(F, f)(x) :=
1

|F |
∑
g∈F

f(gx).

The pointwise version of Theorem 2.7 does not necessarily hold for any given Følner sequence [6].

Definition 2.8 (A. Shulman [18]). A sequence of sets {Fn}n≥1 is said to be tempered, if for some c > 0
and all n ∈ N,

|
⋃
k≤n

Fk
−1Fn+1| ≤ c|Fn+1|.

A version of maximal ergodic theorem was proved for tempered sequences [20]. We also have the following
theorem for tempered Følner sequences [6].

Theorem 2.9 (Pointwise ergodic theorem). Let G be an amenable group acting on a measure space (X,B, µ),
and let {Fn}n≥1 be a tempered Følner sequence. Then for any f ∈ L1(µ),

lim
n→∞

A(Fn, f)(x) =

∫
X
fdµ a.e.

A space (X,B, µ) on which acts, together with a partition P of X, is called a process. If x ∈ X and P
is a partition, then we denote the unique element of P containing x by P(x). If also F ⊂ G we set,

PF :=
∨
g∈F

g−1P,

where
∨

denotes the joint operation on the set of finite partitions. We recall the definition of the entropy
of a process.

Definition 2.10. For any F ⊂ G and ε > 0, we set,

b(F, ε,P) := min{|C| : C ⊂ PF , µ(∪C) > 1− ε},

then the entropy hµ(P) is defined as,

hµ(P) := lim
ε→∞

lim inf
n→∞

log b(Fn, ε,P)

|Fn|
,

where {Fn}n≥1 is a Følner sequence for G.

The following theorem is a generalized version of Shannon-McMillan-Breiman theorem [6].

Theorem 2.11. Let P be a finite partition and assume that G is an amenable group acting ergodically on a
measure space (X,B, µ). Let hµ(P) denote the entropy of this process. Assume that {Fn}n≥1 is a tempered
sequence of Følner sets. Then for almost every x,

− log(µ(PFn(x)))

|Fn|
−→ hµ(P) as n→∞.
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3. Entropy operator of action of amenable groups

In the rest of the paper, let X be a metric space and BX be the σ-algebra of all Borel partitions. Let G
be an amenable group acting on the space (X,BX), µ ∈ M(G,X) and P be a measurable partition of X.
Let also {Fn}n≥1 be a tempered Følner sequence of G, such that |Fn+1| ≥ |Fn|.

Definition 3.1. For x, y ∈ X and n ∈ N, we set,

γn(x, y;P) := lim sup
m→∞

1

|Fm|
card({g ∈ Fm : y ∈ g−1PFn(x)})

and

γ∗n(x, y;P) :=

{
− 1
|Fn| log γn(x, y;P) : γn(x, y;P) 6= 0,

0 : γn(x, y;P) = 0.

Lemma 3.2. For x, y ∈ X and a partition P, the sequence {γ∗n(x, y;P)}n≥1 is increasing.

Proof. Let k ≤ n. The partition PFn is finer than PFk therefore, if x ∈ X then PFn(x) ⊂ PFk(x) and
consequently g−1PFn(x) ⊂ g−1PFk(x) for any g ∈ G. Now, for m ∈ N we have,

{g ∈ Fm : y ∈ g−1PFn} ⊂ {g ∈ Fm : y ∈ g−1PFk},

which easily results in γn(x, y;P) ≤ γk(x, y;P), therefore γ∗k(x, y;P) ≤ γ∗n(x, y;P). �

By Lemma 3.2, limn→∞ γ
∗
n(x, y;P) exists as an extended real non-negative number. So, we may have

the following definition.

Definition 3.3. For x, y ∈ X and the partition P of X, set

ΓG(x, y) :=
√

lim
n→∞

γ∗n(x, y;P).

The function ΓG : X ×X → [0,+∞] is called the entropy kernel of G-action on X.

Definition 3.4. Let A(G) be the set of all measurable functions f : X → R such that the integral∫
X

ΓG(x, y)f(y)dµ(y),

exists for almost every x ∈ X.
For f ∈ A(G) set

Φ∗Gf(x) :=

∫
X

ΓG(x, y)f(y)dµ(y). (3.1)

Before we mention our first main result, we need to note that, when G is an amenable countably infinite
discrete group, for any finite measurable partition P of X and any µ ∈M(G,X), one has the equality

hµ(P) =

∫
E(G,X)

hm(P)dτµ(m), (3.2)

where µ =
∫
E(G,X)mdτµ(m) is the ergodic decomposition of µ. One can deduce (3.2) from Proposition 5.3.2

and 5.3.5 of [8] and the proof in the case G = Z like Theorem 8.4.(i) of [23] .

Theorem 3.5. hµ(P) < +∞, if and only if ΓG ∈ L2(X×X,µ×µ). Moreover, under the previous condition
we have,

||ΓG||L2(X×X,µ×µ) =
√
hµ(P).
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Proof. First, let m ∈ E(G,X), x, y ∈ X and n ∈ N. For almost all y ∈ X, by pointwise ergodic theorem,
we have,

γn(x, y;P) = lim sup
k→+∞

1

|Fk|
card({g ∈ Fk : y ∈ g−1PFn(x)})

= lim sup
k→+∞

1

|Fk|
∑
g∈Fk

χg−1PFn (x)(y)

= lim sup
k→+∞

1

|Fk|
∑
g∈Fk

χPFn (x)(gy)

= lim sup
k→+∞

A(Fk, χPFn (x))(y)

=

∫
X
χPFn (x)dm(y)

=m(PFn(x)),

so, for almost all y ∈ X,

γ∗n(x, y;P) = − logm(PFn(x))

|Fn|
.

By Theorem 2.11,

lim
n→+∞

γ∗n(x, y;P) = hm(P),

for almost all x, y ∈ X, so

ΓG(x, y) = hm(P),

for almost all x, y ∈ X. This easily results in

||ΓG||L2(X×X,m×m) =
√
hm(P).

Now, let in general µ ∈ M(G,X), then µ × µ ∈ M(G × G,X × X). Let τµ and τµ×µ be the probability
measures in Corollary 2.5, corresponding to µ and µ× µ respectively.

Set ∆ := {m ×m : m ∈ E(G,X)}, then ∆ ⊂ E(G × G,X × X). If ψ : E(G,X) → ∆ is the bijection
ψ(m) = m×m then τµ×µ = τµψ

−1 on the Borel subsets of ∆. Therefore,

τµ×µ(E(G×G,X ×X) \∆) =1− τµ×µ(∆)

=1− τµψ−1(∆)

=1− τµ(E(G,X))

=0.

For n ≥ 1, let gn := min{Γ2
G, n}. Then {gn}n≥1 is an increasing sequence of non-negative bounded mea-

surable functions on X ×X such that gn ↑ Γ2
G. By Monotone Convergence Theorem and Corollary 2.5 we
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have,

||ΓG||2L2(X×X,µ×µ) =

∫
X×X

Γ2
Gdµ× µ

= lim
n→+∞

∫
X×X

g2
ndµ× µ

= lim
n→+∞

∫
E(G×G,X×X)

(∫
X×X

gndν

)
dτµ×µ(ν)

=

∫
E(G×G,X×X)

(∫
X×X

Γ2
Gdν

)
dτµ×µ(ν)

=

∫
∆

(∫
X×X

Γ2
Gdν

)
dτµψ

−1(ν)

=

∫
E(G,X)

(∫
X×X

Γ2
Gdm×m

)
dτµ(m)

=

∫
E(G,X)

hm(P)dτµ(m)

=hµ(P).

This completes the proof. �

Corollary 3.6. If hµ(P) < +∞, then,

1. L2(X,µ) ⊂ A(G).

2. L2(X,µ) is Φ∗G-invariant, i.e., Φ∗G(L2(X,µ)) ⊂ L2(X,µ).

Proof. To prove part 1, let f ∈ L2(X,µ), then,∣∣∣∣∫
X

ΓG(x, y)f(y)dµ(y)

∣∣∣∣ ≤ ∫
X

ΓG(x, y)|f(y)|dµ(y)

≤
(∫

X
ΓG(x, y)2dµ(y)

) 1
2

||f ||L2(X,µ).

(3.3)

Set g(x) :=
∫
X ΓG(x, y)2dµ(y). Since hµ(P) < +∞, by Theorem 3.5 ΓG ∈ L2(X ×X,µ× µ), therefore,∫

X
g(x)dµ(x) =

∫
X

∫
X

ΓG(x, y)2dµ(y)dµ(x) = ||ΓG||2L2(X×X,µ×µ) < +∞.

So g(x) =
∫
X ΓG(x, y)2dµ(y) is finite for almost all x ∈ X, therefore by (3.3),

∫
X ΓG(x, y)f(y)dµ(y) exists

for almost all x ∈ X, which means f ∈ A(G).

Since for all f ∈ L2(X,µ) we have,

||Φ∗Gf ||L2(X,µ) ≤ ||ΓG||L2(X×X,µ×µ)||f ||L2(X,µ), (3.4)

Part 2 also holds.
If hµ(P) < +∞, we set ΦG := Φ∗G|L2(X,µ) which by Corollary 3.6, is a linear operator on the Hilbert space
H = L2(X,µ). The linear operator ΦG : L2(X,µ) → L2(X,µ) is called the entropy operator of the action
of G on X. In this case, we have even more about ΦG.

Theorem 3.7. If hµ(P) < +∞, then,

1. ΦG is a compact bounded linear operator on L2(X,µ) such that ||ΦG||op ≤ ||ΓG||L2(X×X,µ×µ).
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2. If {λn}n≥1 is the sequence of eigenvalues of ΦG, then,

hµ(P) =
+∞∑
n=1

λ2
n dim(En),

where En is the eigenspace corresponding to λn.

Proof. Part 1 is a direct result of (3.4).

To prove part 2, consider an orthonormal basis B =
⋃+∞
n=0 Bn for L2(X,µ) where B0 = {f0

k}
d0
k=1 is an

orthonormal basis for ker ΦG and Bn = {fnk }
dn
k=1 (n ≥ 1) is an orthonormal basis for En. Then we have,

∞∑
n=1

λ2
n dim(En) =

∞∑
n=1

dn∑
k=1

||ΦGf
n
k ||2L2(µ)

=
∞∑
n=0

dn∑
k=1

||ΦGf
n
k ||2L2(µ)

=

∞∑
n=0

dn∑
k=1

∫
X
|(ΦGf

n
k )(x)|2 dµ(x)

=
∞∑
n=0

dn∑
k=1

∫
X

∣∣∣∣∫
X

ΓG(x, y)fnk (y)dµ(y)

∣∣∣∣2 dµ(x)

=
∞∑
n=0

dn∑
k=1

∫
X
dµ(x) |< ΓG(x, ·), fnk >|

2

=

∫
X
dµ(x)

∞∑
n=0

dn∑
k=1

|< ΓG(x, ·), fnk >|
2

=

∫
X
dµ(x)||ΓG(x, ·)||2L2(µ)

=

∫
X
dµ(x)

(∫
X

ΓG(x, y)2dµ(y)

)
=

∫
X

∫
X

ΓG(x, y)2dµ(y)dµ(x)

=||ΓG||2L2(X×X,µ×µ)

=hµ(P). �

4. Conclusion:

motivated by [10, 11], in this paper, we consider the entropy of action of amenable groups as a linear
operator instead of a non-negative number. In case of finite entropy, a Hilbert-Schmidt operator on a Hilbert
space is assigned to the action of an amenable group such that the entropy of the action is expressed in
terms of the spectrum of the operator. So, we have a spectral representation of the entropy of the action of
an amenable group on a compact metric space.
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