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Abstract

This paper is concerned with the local and global existence of solutions for a generalized m-component
reaction–diffusion system with a tridiagonal 2–Toeplitz diffusion matrix and polynomial growth. We derive
the eigenvalues and eigenvectors and determine the parabolicity conditions in order to diagonalize the
proposed system. We, then, determine the invariant regions and utilize a Lyapunov functional to establish
the global existence of solutions for the proposed system. A numerical example is used to illustrate and
confirm the findings of the study. c⃝2017 All rights reserved.
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1. Introduction

In this study, we consider the generalized m-component reaction–diffusion system with m ≥ 2:

∂U

∂t
−A∆U = F (U) , (1.1)
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in Ω × (0,+∞), where Ω is an open bounded domain of class C1 in RM with boundary ∂Ω. The diffusion
matrix A is assumed to be of the form

A =



α1 γ1 0 · · · · · · 0

β1 α2 γ2
. . .

...

0 β2 α1 γ1
. . .

...
...

. . . β1 α2 γ2 0
...

. . . β2
. . .

. . .

0 · · · · · · 0
. . .

. . .


m×m

, (1.2)

with α1, α2, β1, β2, γ1, γ2 > 0 being positive real numbers representing the self and cross–diffusion constants
and satisfying the inequality √

α1α2

max {β1 + γ1, β2 + γ2}
> cos

(
π

m+ 1

)
. (1.3)

The Laplacian operator ∆ =
M∑
i=1

∂2

∂x2
i
has a spatial dimension of M and F (U) is a polynomially growing

functional representing the reaction terms of the system.
The boundary conditions and initial data for the proposed system are assumed to satisfy

αU + (1− α) ∂ηU = B on ∂Ω× (0,+∞) , (1.4)

or

αU + (1− α)A∂ηU = B on ∂Ω× (0,+∞) (1.5)

and

U (x, 0) = U0 (x) on Ω, (1.6)

respectively. For generality, we will consider three types of boundary conditions in this paper:

(i) Nonhomogeneous Robin boundary conditions, corresponding to

0 < α < 1, B ∈ Rm;

(ii) Homogeneous Neumann boundary conditions, corresponding to

α = 0 and B ≡ 0;

(iii) Homogeneous Dirichlet boundary conditions, corresponding to

1− α = 0 and B ≡ 0.

Note that
∂

∂η
denotes the outward normal derivative on ∂Ω and the vectors U , F , and B are defined as

U := (u1, ..., um)T ,

F := (f1, ..., fm)T ,

B := (β1, ..., βm)T .

The initial data is assumed to be in the region given by

ΣL,∅ = {U0 ∈ Rm : ⟨Vℓ, U0⟩ ≥ 0, ℓ ∈ L} , (1.7)
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subject to

⟨Vℓ, B⟩ ≥ 0, ℓ ∈ L. (1.8)

The study at hand builds upon numerous previous works found in the literature. Among the most
relevant studies is that of Abdelmalek in [1] where he considered an m-component tridiagonal matrix of the
form

A =



α γ 0 · · · 0

β α γ
. . .

...

0 β
. . .

. . . 0
...

. . .
. . .

. . . γ
0 · · · 0 β α


m×m

and proved the global existence of solutions subject to the parabolicity condition

α

β + γ
> cos

π

m+ 1
,

which can be easily shown to fall under the general condition in (1.3) with α = α1 = α2, β = β1 = β2, and
γ = γ1 = γ2.

Another important study is that of Kouachi and Rebiai in [7] where the authors established the global
existence of solutions for a 3× 3 tridiagonal 2–Toeplitz matrix of the form

A =

 α1 γ1 0
β1 α2 γ2
0 β2 α1

 ,

subject to the parabolicity condition

2
√
α1α2 >

√
(β1 + γ1)

2 + (β2 + γ2)
2.

Note that this condition is weaker than

√
2α1α2 > max {β1 + γ1, β2 + γ2} ,

which is obtained from (1.3) for m = 3. Although the work carried out in [7] is important to us here, it
is necessary to note that the authors failed to identify all the invariant regions of the proposed system and
settled for only 4 of them.

This paper will build upon the work of these two studies by assuming the diffusion matrix to be m–
component tridiagonal 2–Toeplitz and determining all the possible invariant regions for the system. A
Lyapunov functional will be used to establish the global existence of solutions in these regions.

The remainder of this paper is organized as follows: Section 2 uses the three point Chebyshev recurrence
relationhip of polynomials to derive the eigenvalues and eigenvectors of the transposed dffusion matrix
for the odd and even dimension cases, respectively. Section 3 derives the parabolicity conditions for the
proposed system, which is essential for the diagonalization process, which follows in Section 4. Section 4
shows how the invariant regions of the equivalent digonalized system can be identified and proves the local
and global existence of solutions. The last section of this paper will present a confirmation and validation of
the findings through the use of numerical examples solved by means of the finite difference approximation
method.
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2. Eigenvalues and Eigenvectors

For reasons that will become apparent in the following section, we will first derive the eigenvalues and
eigenvectors of matrix AT with A being the proposed tridiagonal 2–Toeplitz diffusion matrix. We refer to
the work of Gover in [4] where the characteristic polynomial of a tridiagonal 2–Toeplitz matrix was shown
to be closely connected to polynomials that satisfy the three point Chebyshev recurrence relationship. First,
we have

AT =



α1 β1 0 · · · · · · 0

γ1 α2 β2
. . .

...

0 γ2 α1 β1
. . .

...
...

. . . γ1 α2 β2 0
...

. . . γ2
. . .

. . .

0 · · · · · · 0
. . .

. . .


m×m

. (2.1)

The exact shape and characteristics of AT differ for odd and even values of the dimension m. Hence, we
will consider the two cases separately. Before we present the main findings of [4], let us define the constants

β =

√
β2γ2
β1γ1

and s =

√
γ1γ2
β1β2

. (2.2)

We also define the polynomials {
q0 (µ) = 1, q1 (µ) = µ+ β,
qn+1 (µ) = µqn (µ)− qn−1 (µ)

(2.3)

and {
p0 (µ) = 1, p1 (µ) = µ,
pn+1 (µ) = µpn (µ)− pn−1 (µ) ,

(2.4)

whose zeros are denoted by Qr and Pr, respectively, for r = 1, ..., n. We note that pn (µ) is a Chebyshev
polynomial of the first kind, whereas qn (µ) is not. As shown in [4], the zeros of pn (µ) can be given by

Pr = 2 cos
rπ

n+ 1
,

whereas for Qr no explicit form was found.
Let us now summarize the eigenvalues and eigenvectors for the odd and even cases separately. First, for

m = 2n+ 1, we obtain the following results:

Theorem 2.1. The eigenvalues of the matrix AT of order m = 2n+ 1 given in (2.1) are α1 along with the
solutions of the quadratic equations

(α1 − λ) (α2 − λ)√
β1β2γ1γ2

− 1

β
− β = Pr, (2.5)

for r = 1, 2, ..., n.

Note that for every Pr there exist two eigenvalues for matrix AT , which along with α1 yields m = 2n+1
eigenvalues. For notational purposes, let us define a duplicated set of zeros given by

P
′
2r = P

′
2r−1 = Pr,

for r = 1, 2, ..., n.
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Theorem 2.2. The eigenvector of the matrix AT of order m = 2n + 1 given in (2.1) associated with the
eigenvalue λr, for r = 1, ..., 2n, is given by

Vλr = (v1λr , v2λr , ..., vmλr)
T , (2.6)

where

vℓλr =

 s
ℓ−1
2 q ℓ−1

2

(
P

′
r

)
, ℓ is odd,

− 1
β1
s

ℓ
2
−1 (α1 − λr) p ℓ

2
−1

(
P

′
r

)
, ℓ is even,

(2.7)

for ℓ = 1, ...,m. The eigenvector associated with the eigenvalue α1 is

Vα1 = (v1α1 , v2α1 , ..., vmα1)
T , (2.8)

with

vℓα1 =


(
− γ1

β2

) ℓ−1
2

, ℓ is odd

0, ℓ is even,
(2.9)

for ℓ = 1, ...,m.

The second case is where the matrix AT (2.1) has an even dimension m = 2n. The following holds:

Theorem 2.3. The eigenvalues of the matrix AT of order m = 2n+ 1 given in (2.1) denoted by λr are the
solutions of the quadratic equations

(α1 − λ) (α2 − λ)√
β1β2γ1γ2

− 1

β
− β = Qr, (2.10)

for r = 1, 2, ..., n, where Qr are the zeros of qn (µ).

Similar to Pr, there exist two eigenvalues for matrix AT associated with every value of Qr, which yields
m eigenvalues. In order to simplify the notation, we define the duplicated set of zeros given by

Q
′
2r = Q

′
2r−1 = Qr,

for r = 1, 2, ..., n.

Theorem 2.4. The eigenvector of the matrix AT of order m = 2n + 1 given in (2.1) associated with the
eigenvalue λr is given by

Vr = (v1λr , v2λr , ..., vmλr)
T , (2.11)

with

vℓλr =

 s
ℓ−1
2 q ℓ−1

2

(
Q

′
r

)
, ℓ is odd

− 1
β1
s

ℓ
2
−1 (α1 − λr) p ℓ

2
−1

(
Q

′
r

)
, ℓ is even,

(2.12)

for ℓ = 1, ...,m.

3. Parabolicity

In this section, we will derive the parabolicity condition for the proposed system. Parabolicity is crucial
to the diagonalization process, which we will be discussed later on in Section 4. In order to ensure the
parabolicity of the system, we examine the positive definiteness of the proposed diffusion matrix. Generally
speaking, a matrix is said to be positive definite if and only if its top-left corner principal minors are all
positive. To this end, Andelic and da Fonesca [2] and others examined the parabolicity condition for a
tridiagonal symmetric matrix. The following theorem holds.
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Proposition 3.1. Let T be the tridiagonal matrix defined as

T =



a1 b1 0 · · · 0

b1 a2 b2
...

0 b2
. . .

. . .
...

...
. . .

. . . bm−1

0 · · · · · · bm−1 am


,

with positive diagonal entries. If

aiai+1 > 4b2i cos
2

(
π

m+ 1

)
(3.1)

for i = 1, ...,m− 1, then T is positive definite.

Since the diffusion matrix considered here is not symmetric, Proposition 3.1 does not apply directly to
it. However, we know that if a matrix is not symmetric, its quadratic form Q = ⟨X,AX⟩ = XTAX, with
X being an arbitrary column vector, is said to be positive definite if and only if the principal minors in the
top–left corner of 1

2

(
A+AT

)
are all positive. In order to derive sufficient conditions for matrix A in (1.2),

we apply Proposition 3.1 to produce the following theorem.

Theorem 3.2. Let A be the tridiagonal 2–Toeplitz matrix defined in (1.2). The quadratic form of A is
positive definite iff condition (1.3) is satisfied. It follows that subject to (1.3), the reaction diffusion system
(1.1) satisfies the parabolicity condition.

Proof. Condition (3.1) can be rearranged to the form

√
aiai+1 > 2 |bi| cos

(
π

m+ 1

)
. (3.2)

The symmteric counterpart of A as defined in (1.2) can be given by

1

2

(
A+AT

)
=



α1
β1+γ1

2 0 · · · · · · 0

β1+γ1
2 α2

β2+γ2
2

. . .
...

0 β2+γ2
2 α1

β1+γ1
2

. . .
...

...
. . . β1+γ1

2 α2
β2+γ2

2 0
...

. . . β2+γ2
2

. . .
. . .

0 · · · · · · 0
. . .

. . .


. (3.3)

Now, substituting (3.3) in (3.2) yields the set of m− 1 conditions

for i = 1 :
√
α1α2 > (β1 + γ1) cos

(
π

m+1

)
for i = 2 :

√
α1α2 > (β2 + γ2) cos

(
π

m+1

)
for i = 3 :

√
α1α2 > (β1 + γ1) cos

(
π

m+1

)
...

...

for i = m− 1 :


√
α1α2 > (β2 + γ2) cos

(
π

m+1

)
, if m is odd,

√
α1α2 > (β1 + γ1) cos

(
π

m+1

)
, if m is even.

However, we notice that the m − 1 conditons reduce to only 2, which can be combined to form condition
(1.3).
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4. Existence of Solutions

This section shows how the proposed system can be diagonalized using the eigenvectors derived in Section
2 above. We start by examining the invariant regions of the system and then move to diagonalize the system
and establish the local and global existence of solutions given the initial data lies within the invariant regions.

4.1. Invariant Regions

Let us denote the positive and descendingly ordered eigenvalues of matrix AT by λℓ, with ℓ = 1, ...,m, and
the corresponding eigenvectors by Vℓ = (v1ℓ, ..., vmℓ)

T , where λ1 > λ2 > ... > λm. Assuming the proposed
system satisfies the parabolicity condition (1.3), matrix AT is guaranteed to have strictly positive eigenvalues,
and thus is unitarily diagonalizable. Generally, the diagonalizing matrix can be formed containing as its
columns the normalized eigenvectors of A. Recalling that for every eigenvalue there exist two eigenvectors
with unit norm and opposite directions, we can define the diagonalizing matrix as

P =
(
(−1)i1 V1 p (−1)i2 V2 p ... p (−1)im Vm

)
, (4.1)

where each power iℓ is either equal to 1 or 2. In order to simplify the notation, let us consider the two
disjoint sets

Z = {ℓ|iℓ = 1}

and
L = {ℓ|iℓ = 2} ,

which satisfy the properties
L ∩ Z = ϕ and L ∪ Z = {1, 2, ...,m} . (4.2)

Each permutation of Z and L satisfying (4.2) yields a valid diagonalizing matrix. The total number of
possible permutations is thus 2m, which is also the number of invariant regions ΣL,Z for the proposed system.
These regions may be written as

ΣL,Z := {U0 ∈ Rm : ⟨Vz, U0⟩ ≤ 0 ≤ ⟨Vℓ, U0⟩ , ℓ ∈ L, z ∈ Z} , (4.3)

subject to
⟨Vz, B⟩ ≤ 0 ≤ ⟨Vℓ, B⟩ , ℓ ∈ L, z ∈ Z. (4.4)

For simplicity, we will only consider one of the invariant regions which corresponds to the sets L =
{1, 2, ...,m} and Z = ∅ and is defined in (1.7) and (1.8). This yields the diagonalizing matrix

P = (V1 p V2 p ... p Vm) . (4.5)

Note that the work carried out in the following subsections can be trivially extended to the remaining
2m − 1 regions.

4.2. Diagonalization and Local Existence of Solutions

In order to establish the local existence of solutions for the proposed system (1.1), we start by diagonal-
izing the system by means of the diagonalizing matrix defined in (4.5). We follow the same work performed
in [1] to obtain the equivalent diagonal system. First, let

W = (w1, w2, ..., wm)T = P TU, (4.6)

where

wℓ := ⟨Vℓ, U⟩

=

{
⟨Vℓ, U⟩ , ℓ ∈ L
⟨(−1)Vℓ, U⟩ , ℓ ∈ Z.
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Let us also define the functional

𝟋 (W ) = (𝟋1,𝟋2, ...,𝟋m)T = P TF (U) , (4.7)

with each function
𝟋ℓ := ⟨Vℓ, F ⟩

fulfilling the following conditions:

(A1) Must be continuously differentiable on Rm
+ for all ℓ = 1, ...,m, satisfying𝟋ℓ(w1, ..., wℓ−1, 0, wℓ+1, ..., wm) ≥

0, for all wℓ ≥ 0; ℓ = 1, ...,m.

(A2) Must be of polynomial growth (see the work of Hollis and Morgan [6]), which means that for all
ℓ = 1, ...,m:

|𝟋ℓ (W )| ≤ C1 (1 + ⟨W, 1⟩)N , N ∈ N,on (0,+∞)m . (4.8)

(A3) Must satisfy the inequality:
⟨D,𝟋 (W )⟩ ≤ C2 (1 + ⟨W, 1⟩) , (4.9)

where
D := (D1, D2, ..., Dm−1, 1)

T ,

for all wℓ ≥ 0, ℓ = 1, ...,m,. All the constants Dℓ satisfy Dℓ ≥ Dℓ, ℓ = 1, ...,m where Dℓ, ℓ = 1, ...,m,
are sufficiently large positive constants.

Note that C1 and C2 are uniformly bounded positive functions defined on Rm
+ .

Finally, let
Λ = P TB.

Now, by observing the similarity transformation

P TA
(
P T

)−1
=

(
P−1ATP

)T
= diag(λ1, λ2, ..., λm), (4.10)

we can propose the following:

Proposition 4.1. Diagonalizing system (1.1) by means of P T yields

Wt − diag(λ1, λ2, ..., λm)∆W = 𝟋 (W ) in Ω× (0,+∞) (4.11)

with the boundary condition

αW + (1− α) ∂nW = Λ on ∂Ω× (0,+∞) (4.12)

or
αW + (1− α) diag(λ1, λ2, ..., λm)∂nW = Λ, (4.13)

and the initial data
W (x, 0) = W0 on Ω. (4.14)

The proof of Proposition 4.1 is trivial and can be looked up in [1]. The diagonal system in (4.11) is
equivalent to (1.1) in the invariant region given in (1.7) and (1.8).

By considering the equivalent diagonal system in (4.11), we can now establish the local existence and
uniqueness of solutions for the original system (1.1) with initial data in C(Ω) or Lp(Ω), p ∈ (1,+∞) using
the basic existence theory for abstract semilinear differential equations (Friedman [3], Henry [5] and Pazy
[8]). It simply follows that the solutions are classical on (0, Tmax), with Tmax denoting the eventual blow up
time in L∞(Ω). The local solution is continued globally by apriori estimates.
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4.3. Global Existence of Solutions

The aim here is to establish the global existence of solutions for the equivalent system (4.11) and
consequently the original system (1.1) subject to the parabolicity condition (1.3) through the use of an
appropriate Lyapunov functional. The results obtained here are similar to those of [1]. Hence, no detailed
proofs will be given here.

Let us define
Kr

l = Kr−1
r−1K

r−1
l −

[
Hr−1

l

]2
, r = 3, ..., l, (4.15)

where

Hr
l = det

1≤ℓ,κ≤l

(
(aℓ,κ)ℓ ̸=l,...r+1

κ̸=l−1,..r

)
k=r−2
Π
k=1

(det [k])2
(r−k−2)

, r = 3, ..., l − 1,

K2
l = λ1λl

l−1
Π
k=1

θ
2(pk+1)2

k

m−1
Π
k=l

θ
2(pk+2)2

k︸ ︷︷ ︸
positive value

[
l−1
Π
k=1

θ2k −A2
1l

]
,

and

H2
l = λ1

√
λ2λlθ

2(p1+1)2

1

l−1
Π
k=2

θ
(pk+2)2+(pk+1)2

k

m−1
Π
k=l

θ
2(pk+2)2

k︸ ︷︷ ︸
positive value

[
θ21A2l −A12A1l

]
.

The term det
1≤ℓ,κ≤l

(
(aℓ,κ)ℓ ̸=l,...r+1

κ̸=l−1,..r

)
denotes the determinant of the r square symmetric matrix obtained from

(aℓ,κ)1≤ℓ,κ≤m by removing the (r + 1)th , (r + 2)th , ..., lth rows and the rth, (r + 1)th , ..., (l − 1)th columns.

where det [1] , ..., det [m] are the minors of the matrix (aℓ,κ)1≤ℓ,κ≤m . The elements of the matrix are:

aℓκ =
λℓ + λκ

2
θ
p21
1 ...θ

p2
(ℓ−1)

(ℓ−1) θ
(pℓ+1)2

ℓ ...θ
(p(κ−1)+1)

2

κ−1 θ(pκ+2)2

κ ...θ
(p(m−1)+2)

2

(m−1) . (4.16)

where λℓ in (2.4)-(2.2). Note that Aℓκ =
λℓ + λκ

2
√
λℓλκ

for all ℓ, κ = 1, ...,m, and θℓ; ℓ = 1, ..., (m− 1) are positive

constants.

Theorem 4.2. Suppose that the functions 𝟋ℓ; ℓ = 1, ...,m are of polynomial growth and satisfy condition
(4.9) for some positive constants Dℓ; ℓ = 1, ...,m sufficiently large. Let (w1 (t, .) , w2 (t, .) , ..., wm (t, .)) be a
solution of (4.11) and

L(t) =

∫
Ω
Hpm (w1 (t, x) , w2 (t, x) , ..., wm (t, x)) dx, (4.17)

where

Hpm (w1, ..., wm) =

pm∑
pm−1=0

...

p2∑
p1=0

Cpm−1
pm ...Cp1

p2 θ
p21
1 ...θ

p2
(m−1)

(m−1) w
p1
1 wp2−p1

2 ...wpm−pm−1
m ,

with pm a positive integer and Cpℓ
pκ = pκ!

pℓ!(pκ−pℓ)!
.

Also suppose that the following condition is satisfied

K l
l > 0; l = 2, ...,m, (4.18)

It follows from these conditions that the functional L is uniformly bounded on the interval [0, T ∗] , T ∗ < Tmax.

Corollary 4.3. Under the assumptions of Theorem 4.2, all solutions of (4.11) with positive initial data in
L∞ (Ω) are in L∞ (0, T ∗;Lp (Ω)) for some p ≥ 1.

Proposition 4.4. Under the assumptions of Theorem 4.2 and given that the condition (1.3) is satisfied, all

solutions of (4.11) with positive initial data in L∞ (Ω) are global for some p >
MN

2
.
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5. Numerical Example

In order to put the findings of this study to the test, let us consider the following 5-component system

∂U

∂t
−A∆U = F (U) , (5.1)

where the transposed diffusion matrix is given by

AT =


1 0.5 0 0 0
0.3 1.5 0.7 0 0
0 0.25 1 0.5 0
0 0 0.3 1.5 0.7
0 0 0 0.25 1

 (5.2)

and the reaction functional F (U) is of the form

F (U) =
(
F1 F2 F3 F4 F5

)T
,

with

Fj (U) = UTΥjU + σT
j U, j = 1, ..., 5.

For the purpose of this example, let Υj be the symmetric matrices given by

Υ1 =


0.0146 −0.0257 0.0073 −0.0088 0
−0.0257 0.0202 −0.004 0 0.0044
0.0073 −0.004 0.0005 0.0011 −0.0015
−0.0088 0 0.0011 −0.0043 0.0027

0 0.0044 −0.0015 0.0027 −0.0007

 ,

Υ2 =


0.1142 0.228 0.0571 0.1293 0
0.228 −0.2281 −0.0153 0 −0.0646
0.0571 −0.0153 0.0041 0.0158 −0.0122
0.1293 0 0.0158 0.0489 −0.0244

0 −0.0646 −0.0122 −0.0244 −0.0061

 ,

Υ3 =


0.3702 −0.1245 0.1851 0.0194 0
−0.1245 0.0371 −0.0817 0 −0.0097
0.1851 −0.0817 0.0132 0.0364 −0.0397
0.0194 0 0.0364 −0.0079 0.0133

0 −0.0097 −0.0397 0.0133 −0.0198

 ,

Υ4 =


−0.1316 −0.1013 −0.0658 −0.0743 0
−0.1013 0.1177 0.0236 0 0.0371
−0.0658 0.0236 −0.0047 −0.0154 0.0141
−0.0743 0 −0.0154 −0.0252 0.0108

0 0.0371 0.0141 0.0108 0.0070


and

Υ5 =


−0.1651 0.5295 −0.0825 0.2108 0
0.5295 −0.4429 0.0539 0 −0.1054
−0.0825 0.0539 −0.0059 −0.0081 0.0177
0.2108 0 −0.0081 0.0949 −0.0567

0 −0.1054 0.0177 −0.0567 0.0088

 .
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Also, suppose that 

σ1 =
(
0.0795 0.0303 −0.0243 −0.014 0.0059

)T
,

σ2 =
(
−0.6466 −0.6144 0.0798 0.2844 0.0572

)T
,

σ3 =
(
0.4549 −0.2791 −0.2846 0.1292 0.1635

)T
,

σ4 =
(
0.2682 0.3879 0.0097 −0.1796 −0.0618

)T
,

σ5 =
(
−1.6033 −0.8159 0.4251 0.3777 −0.0608

)T
.

The system clearly satisfies the parabolicity condition (1.3) as

√
α1α2

max {β1 + γ1, β2 + γ2}
=

√
1.5

0.95
= 1.2892 > cos

(π
5

)
= 0.8090.

We have from (2.2)

β =

√
0.7× 0.25

0.5× 0.3
= 1.0801. (5.3)

Hence, we can form the polynomial pn (µ) as{
p0 (µ) = 1, p1 (µ) = µ
p2 (µ) = µ(µ)− 1 = µ2 − 1,

with solutions
P1 = 1 and P2 = −1. (5.4)

Now, the eigenvalues are α1 along with the solutions of the following two equations derived from (2.5){
(1−λ)(1.5−λ)√

0.5×0.7×0.3×0.25
− 1

1.0801 − 1.0801 = 1,
(1−λ)(1.5−λ)√

0.5×0.7×0.3×0.25
− 1

1.0801 − 1.0801 = −1,

which can be simplified to {
6.1721 (λ− 1) (λ− 1.5)− 3.0059 = 0,
6.172 1 (λ− 1) (λ− 1.5)− 1.0059 = 0.

Solving the two quadratic equations in λ yields the four eigenvalues of A, which in descending order can be
given by 

λ1 = 1.9913,
λ2 = 1.7248,
λ3 = 1,
λ4 = 0.77516,
λ5 = 0.50871.

(5.5)

Hence,
D = diag(λ1, λ2, λ3, λ4, λ5).

Similarly, formula (2.11)-(2.12) can be used to derive the eigenvectors of AT , which are arranged according
to the corresponding eigenvalues to form the diagonalizing matrix

P =



0.3848 −0.5265 −0.5632 −0.9063 −0.8769
0.7629 −0.7633 0.5534 0.0000 0.3943
0.3705 −0.0195 −0.5423 0.3884 −0.0325
0.3531 0.3534 0.2562 0.0000 −0.1825
0.0891︸ ︷︷ ︸

V1

0.1219︸ ︷︷ ︸
V2

−0.1303︸ ︷︷ ︸
V3

−0.1665︸ ︷︷ ︸
V4

0.2030︸ ︷︷ ︸
V5

 . (5.6)
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Figure 1: The solutions of the equivalent diagonal system described in (5.7) in the diffusion-free case with the initial data given
in (5.9).

Matrix P T is used to diagonalize the system yields the equivalent system

∂w1
∂t − 1.9913∆w1 = −0.5w1w5 + 0.65w2,
∂w2
∂t − 1.7248∆w2 = 0.5w1w5 − 0.65w2,
∂w3
∂t −∆w3 = −0.32w3w5 + 0.41w4,
∂w4
∂t − 0.77516∆w4 = 0.32w3w5 − 0.41w4,
∂w5
∂t − 0.50871∆w5 = −0.5w1w5 + 0.65w2 − 0.32w3w5 + 0.41w4.

(5.7)

Note that for simplicity, we have neglected small terms and rounded the polynomial coefficients to four
decimal points. The resulting reaction terms clearly satisfy conditions (A1) through (A3) as discussed in
Section 4.2 above.

Observe that the proposed system has 25 = 32 invariant regions where the resulting wℓ0 is guaranteed
to be positive. We consider one of these regions corresponding to wℓ0 = ⟨Vℓ, U0⟩ and given by

ΣL,∅ = {U0 ∈ Rm : ⟨Vℓ, U0⟩ ≥ 0, ℓ = 1, ...,m} ,

which yields five inequalities
0.3848u01 + 0.7629u02 + 0.3705u03 + 0.3531u04 + 0.0891u05 ≥ 0,
−0.5265u01 − 0.7633u02 − 0.0195u03 + 0.3534u04 + 0.1219u05 ≥ 0,
−0.5632u01 + 0.5534u02 − 0.5423u03 + 0.2562u04 − 0.1303u05 ≥ 0,
−0.9063u01 + 0.3884u03 − 0.1665u05 ≥ 0,
−0.8769u01 + 0.3943u02 − 0.0325u03 − 0.1825u04 + 0.2030u05 ≥ 0,

(5.8)

with

U0 = (u01, u02, u03, u04, u05)
T .

Solving this system of inequalities yields the first region where the initial data is assumed to lie. We will
consider for instance the initial data

U0 = (0, 15, 14, 29, 20)T . (5.9)

The equivalent diagonalized system (5.7) was solved numerically by means of the finite difference (FD)
method. Figures 1 and 2 show the solutions to the diagonalized system (5.7) and the original system (5.1),
respectively, in the diffusion free case. In the one dimensional case, a sinusoidal perturbation is added to
the initial data to introduce spatial diversity into the model. The solutions are shown in Figures 3 and 4.
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Figure 2: The solutions of the original system described in (5.1) in the diffusion-free case with the initial data given in (5.9).

Figure 3: The solutions of the equivalent diagonal system described in (5.7) in the one-dimensional diffusion case.

Figure 4: The solutions of the original system described in (5.1) in the one-dimensional diffusion case.
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