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Abstract

In this article, the notion of Randomness of Lacunary statistical acceleration convergence of x* over
p-metric spaces defined by sequence of Orlicz has been introduced and some theorems related to that
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1. Introduction

The faster convergence of sequences particularly the acceleration of convergence of sequence of partial
sums of series via linear and nonlinear transformations are widely used in finding solutions of mathematical
as well as different scientific and engineering problems. The problem of acceleration convergence often occurs
in numerical analysis. To accelerate the convergence, the standard interpolation and extrapolation methods
of numerical mathematics are quite helpful. It is useful to study about the acceleration of convergence
methods, which transform a slowly converging sequence into a new sequence, converging to the same limit
faster than the original sequence. The speed of convergence of sequences is of the central importance in the
theory of sequence transformation.

The concept of statistical convergence plays a vital role not only in pure mathematics but also in other
branches of science involving mathematics, especially in information theory, computer science, biological
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science, dynamical systems, geo-graphic information systems, population modeling, and motion planning in
robotics.

The notion of statistical convergence was introduced by Fast [6] and Schoenberg [9] independently. Over
the years and under different names statistical convergence has been discussed in the theory of fourier
analysis, ergodic theory, and number theory. In the recent years, generalizations of statistical convergence
have appeared in the study of strong integral summability and the structure of ideals of bounded continuous
functions on Stone-Cech compactification of the natural numbers. Moreover statistical convergence is closely
related to the concept of convergence in probability.

The notion of statistical convergence depends on the density of subsets of N. A subset of N x N x N is
said to have density ¢ (E) if

r s t
d(E) = nsljgloo % Z Z Z X>E (mnk) = 0.

m=1n=1k=1

Throughout this paper, w, I', and A denote the classes of all, entire, and analytic scalar valued single
sequences, respectively.

We write w? for the set of all complex sequences (Z,,,), where m,n, k € N, the set of positive integers.
Then, w? is a linear space under the coordinate wise addition and scalar multiplication.

Let (xmnk) be a triple sequence of real or complex numbers. Then the series Z;On =1 Tmnk is called
a triple series. The triple series > >~ | Tk is said to be convergent if and only if the triple sequence
(Smnk) is convergent, where o

m,n,k

Srnk = Z «Tz‘jq(m,n, k=1,2,3,.. )
t,5,g=1

A triple sequence (real or complex) can be defined as a function z : N x N x N — R (C), where NJR and
C denote the set of natural numbers, real numbers and complex numbers respectively. The different types
of notions of triple sequence was introduced and investigated at the initial by Sahiner et al. [7, 8], Esi et
al. [3-5], Datta et al. [1], Subramanian et al. [10], Debnath et al. [2] and many others.

A sequence x = (Z,,,%) is said to be triple analytic if

1
SUp | Tk m T E < oo.
m,n,k

The vector space of all triple analytic sequences is usually denoted by A3. A sequence = = (Zp,,k) is called
triple chi sequence if

((m+n+k)! \xmnk|)ﬂ1+h+k — 0 as m,n, k — oo.

The vector space of all triple chi sequences is usually denoted by x>. The space x? is a metric space with
the metric

1
d<m7y) = SUPm,n,k {((m +n+ k)‘ ’xmnk - ymnk‘)m+n+k -m, ?’L,k' : 172737 .. }

for all # = {Zni} and y = {Ymnr} in x>. Let ¢ = {finite sequences} .

Consider a triple sequence z = (Z;nk). The (m,n, k)th section z[™™* of the sequence is defined by
glmmkl — Z;Z’Zﬁomzjq&jq for all m,n,k € N, where d,,,; is a three dimensional matrix with 1 in the

(m,n, k)" position and zero otherwise.

Consider a triple sequence = (Znk). The (m,n, k)"

section ™™ of the sequence is defined by
glmmkl — Z%’Zfo$ijq%ijq for all m,n, k € N; where ;;, denotes the triple sequence whose only non zero
term is a 1 in the (4, j, k)th place for each i, j,q € N.



N. Rajagopal, N. Subramanian, P. Thirunavukkarasu, Commun. Nonlinear Anal. 4 (2017), 149-166 151

An Orlicz function is a function f : [0,00) — [0,00) which is continuous, non-decreasing, and convex
with f(0) =0, f(x) >0 for x >0 and f (z) — oo as © — oo. If convexity of Orlicz function f is replaced
by f(z+vy) < f(x)+ f(y), then this function is called modulus function. An Orlicz function f is said to
satisfy A2-condition for all values u, if there exists K > 0 such that f (2u) < K f (u),u > 0.

Lemma 1.1. Let f be an Orlicz function which satisfies Ag-condition and let 0 < § < 1. Then for each
t > 6, we have f (t) < K§~1f(2) for some constant K > 0.

A sequence [ = (fmnk) of Orlicz function is called a Musielak-Orlicz function. A sequence g = (gmnk)
defined by

Imnk (V) = sup{|v|u — (frnk) (w) :u >0}, m,n, k=1,2,...

1s called the complementary function of a sequence of Musielak-Orlicz f. For a given sequence of Musielak-
Orlicz function f, the Musielak-Orlicz sequence space ty is defined as follows

tr= {x cw’: Iy (|Zmne) Y™ =50 as m,n, k — oo} ,

where Iy is a convex modular defined by

o0 o0 o0
=SS ok (i) 2 = () € 1.

m=1n=1 k=1

2. Definition and preliminaries

Let n € N and X be a real vector space of dimension w, where n < w. Let real valued function
dp(x1,...,2n) = ||(di(21,0),...,dn(zn,0))[|, on X satisfying the following five conditions:

) I(di(z1,0),...,dn(2n,0))|, = 0 if and and only if di(x1,0),...,dn(zs,0) are linearly dependent;
(i) ||(di(z1,0),...,dn(xn,0))], is invariant under permutation;
) H(adl(xh 0)7 s 7dn(xn7 0))”13 = ’a‘ ‘|(d1($170)7 s 7dn(wn70))Hp’ a€eR;
iv) dp ((21,91), (22,92) -+ (@0, ) = (dx (21,2, 20)P + dy (1,52, ya)?)"/? for 1 < p < 05 (or)
(v) d((z1,91), (22, 92), "+ (Tn, Yn)) = sup {dx (x1, 2, - Tn), dy (Y1, Y2, - yn)}
for x1,@e, -2 € X, y1,y2, - yn € Y (is called the p-product metric of the Cartesian product of n-metric
spaces) is the p-norm of the n-vector of the norms of the n-sub spaces.

A trivial example of p-product metric of n-metric space the p-norm space is X = R equipped with the
following Euclidean metric in the product space the p-norm:

[(di(21,0); . .., dn(2n,0)) || & = sup (| det(dmn (£mn, 0))])

di1 (211,0)  di2 (212,0) -+ dip (21p,0)
do1 (221,0) daa (222,0) -+ dop (21p,0)
= sup . . . s
dnl (xnh 0) an (xn27 O) T dnn (xnna O)
where z; = (241, i) € R" foreach i = 1,2,...,n

If every Cauchy sequence in X converges to some L € X, then X is said to be complete with respect to
the p-metric. Any complete p-metric space is said to be p-Banach metric space.

Definition 2.1. A sequence space Er of fuzzy numbers is said to be (i) solid (or normal) if (Yinnk) € Er
whenever (X,n1) € Er and d (Yunk, 0) < d(Xpnk, 0) for all m,n, k € N; (i) symmetric if (X,x) € Er
implies (Xw(mnk)) € Er where 7 is a permutation of N x N x N.
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Let K = {k1 < ko <---} C Nand E be a sequence space. A K-step space of E is a sequence space
A e = {(Xinpnok,) € Wt (mpnpky) € E}.

A canonical preimage of a sequence {(xmpnpkp)} S )\f( is a sequence {Ymnk} € w? defined as

Tmnk, ifm,n,kek,
Ymnk = .
" 0, otherwise.

A canonical preimage of a step space )\E is a set of canonical preimages of all elements in A%, ie., y is
canonical preimage of )\ﬁ if and only if y is canonical preimage of some = € A}E(.

Definition 2.2. A sequence space Er is said to be monotone if Fr contains the canonical pre-images of
all its step spaces.

By the convergence of a triple sequence we mean the convergence on the Pringsheim sense that is, a
triple sequence x = (k) has Pringsheim limit L (denoted by P — lima = L) provided that for given
€ > 0 there exists ¢ € N such that |z;,,x — L| < € whenever m,n,k > q. We shall write more briefly as
P-convergent.

Definition 2.3. The triple sequence 6;¢; = {(m;,ng, kj)} is called triple lacunary if there exist three
increasing sequences of integers such that

mo =0,h; =m; —m,_1 — 00 as i — oo and
no=0,hy =ny —ny_1 — oo as { — oo,

kQZO,hij:kij—kj_l—)OO&Sj—)OO.
Let m; ¢ ; = mingkj, hip; = hihghj, and 8; ; ; be determined by
Ligj = {(m,n, k) : mi_1 <m <m;and ng_y <n <ngand kj_1 <k < kj;},

my ng __ k;
qr = yde = an:k

3. Notion of \,,,— triple x® and triple A2 sequences

Let A = (Ank) be a strictly increasing triple sequence of positive reals tending to infinity, that is
>\m+1,n,k < )‘mnk + 1, )‘m,n—‘rl,k < Amnk + ]-7 Am,n,k—l—l < )‘mnk + 1, )‘mnk - >‘m+1,n,k - )‘m,n—i—l,k - Am,n,k-‘,—l <
Ak + 1 = At nt1k+1, A1 = 1, we say a sequence = (Zynk) € w3 is a triple A— convergent to
the number L € N, called as the triple A— limit of z, if Ay (z) — L as a,b,c — oo, where Ay =
L E?:;Cn’k:o p\mnk - )\m+1,n,k - /\m,n+1,k - )\m,n,kJrl‘ Tmnk, 4, b, ceN.

)\Ll C
T}ge generalized de la Vallee-Poussin means is defined by

tmnk ($) = )\;11”6 Z Tmnk,

m,n,kELnnk

where I,k = [mnk — Ak + 1, mnk] . A sequence © = () is said to (V, A) — summable to a number L
if tynk (£) — L, as m,n, k — oo.

The notion of A— triple gai and triple analytic sequences as follows: Let A = ()‘mnk);o,n,kzo be a strictly
increasing sequences of positive real numbers tending to infinity, that is

0 < Agoo < M1 < -+ and i — c0asm,n, k — 0o
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and said that a sequence = (Zynk) € w? is A— convergent to 0, called a the A— limit of z, if BY (z) —
0Oasm,n, k — oo, where

By (x = et Z Z Z Amnk = Amntlk = Amnktl T Amnt k41 = Amaink + Amitnt ik + Amgin ket
T8
melrst ne[rst kelrcf
1 k
— Amt1nt1 k41 ((m4+n+ kA zm,|) /m+n+ :
where,

1/m+n+k _ 1/m+n+k -1 -1
((m +n+ k)' ’Amwmnk‘) / - (m +n+ k)' fmtn A™ )\mnkxmnk —A™ )\m,n+1,kxm,n+1,k
-1 -1
—A™ Am,n,k—i—lxm,n,k—&-l + A™ )\m,n+1,k+1xm,n+l,k+l
m—1 m—1
- A >\m+1,n,k$m+1,n,k +A )‘m-l—l,n—&-l,kxm—i—l,n-‘rl,k

m—1 m—1 1/m+n+k
+A Am+1,n,k+1xm+1,n,k+1 - A )\m+1,n+1,k+1xm+1,n+17k+1'

In particular, we say that = is a A\y,np— triple gai sequence if By (z) — 0 as m,n, k — oco. Further we say
that z is Ajynk— triple analytic sequence if supp,, | By (z)| < co. We have

lim ‘Bg (.%') - CL‘ = lim Z Z Z Amnk — Am n+lk — )\m,n,kJrl + Am,nJrl,chrl
m,n,k—00 m,n,k—00 (p st
mEIlrst Nn€lrst k€Lrst
1/m4n
- )\m—i—l,n,k + )\m—i—l,n—i-l,k: + Am—&-l,n,k—i—l - )‘m+1,n+17k+1 ((’I?’L + TL)' |Amxmn‘) / =0.
So we can say that limm, koo |Bh ()] = a. Hence x is Appr— convergent to a. Let I?— be an admis-

sible ideal of 2NV*NxN g . he a double lacunary sequence, f = (fink) be a sequence of Musielak-Orlicz
functions, and (X I(d(x1,0),d(z2,0), - ,d(xn—1,0))] ) be a p-metric space, ¢ = (Gmnk) be triple ana-
lytic sequence of positive real numbers. By w3 (p — X) we denote the space of all sequences defined over
(X I(d (z1,0),d(22,0),...,d(xn—1,0))] ) . The following inequality will be used throughout the paper. If
0 < Gmnk < SUP Grnk = H,K = max (1,2771), then

|amnk‘ + bmnk’ank S K{|amnk|qmnk + |bmnk‘ank}

for all m,n,k and amnk, bmnk € C. Also |a|"* < max (1, \a]H) for all a € C.

4. Acceleration convergence of multiple sequences of fuzzy numbers

In this section some more definitions related to triple sequences of fuzzy numbers have been defined
and some interesting theorems regarding acceleration convergence of triple sequences of fuzzy numbers have
been discussed.

Definition 4.1. Let © = (k) and ¥ = (Ymnk) be two triple sequences of real numbers. Then the sequence
((mAn ) @)
(mAn+k)ymng) /™

x is said to converge P—x? faster than the sequence y, written as x <* vy, if P—1lim .
=0.

Definition 4.2. The sequence & = (L) is said to converge at the same rate in Pringsheim’s sense as the
sequence Yy = (Ymnk) , Written as x b =X y, if

((m+ 1+ k) @) /" H
((m +n+ k)!ymnk)l/m+n+k

((m+n+ k)!xmnk)l/m+n+k

0 < P —liminf
(M + 14 E) gy /T TF

< P — liminf < 0.
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Definition 4.3. The four dimensional matrix A = (aj¢m,n) is said to P-accelerate the convergence of the
sequence & = (Zynk) if Az < 2. We define the P-acceleration field of A as the set

{x = (Tynk) € w3 Az <P x}
Now we define the acceleration convergence of triple sequences of fuzzy numbers as follows.

Definition 4.4. Let X = (X,,nx) and Y = (Y,,nx) be two double sequences of fuzzy numbers with X, — 0
and Y,,nr — 0. Then the sequence X converges to 0, P—x? faster than the sequence Y converges to 0, written

d((mAn+k) X )1/’”"*’“ 0 LS n+k &
s X <P Plim ((((m+n+k)!Ymn:)l/m+”+k,0)) = 0, provided d (((m 1 B 0) 7
0 for all m,n,k € N.

Definition 4.5. The triple sequence X = (X,,,x) converges to 0 at the same rate in Pringsheim’s sense as
the sequence Y = (Y;,,1) converges to 0, written as X ~* - Y, if

d(((m+n+k) i) /T 6)

a((m+n+ k) Vo) " )

E (((m +n+ k)!xmnk)l/hH-qH_k 76)

0 < P —liminf — P
d (((m +n+ k)!ymnk)l/m+n+ 70>

< P — liminf < 0.

Definition 4.6. The four dimensional matrix A = (ak¢mn) is said P-accelerate the convergence of the
sequence X = (Xni) if AX <P X. We define the P-acceleration field of A as the set

{X = (Xonp) € 0 1 AX <P X}

Definition 4.7. A matrix transformation associated with the four-dimensional matrix A is said to be an

3 — 3 if AX is in the set X3, whenever X is in 3/ and is analytic.

In the present paper we define the following sequence spaces:

[ 100.(360,0), (32,0) -, d (%1, 0)IE]
= {ros.t € ot s Lot (Ilttmani (X) (@(X,0),4(X5.0)---,d (Ka-1,0)] )|z e
A (050,04 (6, 0) - d (a1, O]

= {rs,t € Lrut [t (e (X) 1 (d(X1,0),d (X2,0) ,...d (X1, 0, )

dmnk

K} eI’

If we take frnk (X) = X, we get

113

X 1 (X1,0),d (X2, 00 d (X, O

_ {r,s,tefmt; [(”ank (X),(d(X1,0),d(X2,0),...,d(Xp_1,0))| )}qm"’“ e} e’

113

A3 (X1,0),d (X2,0) . d (K O]

_ {r,s,té]rst: [(Ilumnk (X),(d(X1,0),d(X2,0),....d(Xn_1,0))]| )}q’”"’“ K} e I®.

If we take ¢ = (¢mnk) = 1, we get

X3 1(d.(X1,0),d (X2,0) ..., d (X 1,0))] ]

~ {rest € o o (bt (). (061,00, 008,01 0D, )] 2 €2
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I3

A 1d(X1,0).d (X2,0) ..o d (X ODE]
- {r,s,t € Iay - [fmnk (Humnk (X),(d(X1,0),d(X2,0),...,d(Xn_1,0))]| )} } e I,

In the present paper we plan to study some topological properties and inclusion relation between the above
defined sequence spaces,

3 I3

and AT |(d(X1),d(Xo) - d (Xu)E],

erst

[ 1@ (X0), d(X2) - d (X)),

rst

which we shall discuss in this paper.

5. Main results

Theorem 5.1. Let f = (fnk) be an Musielak-Orlicz function and ¢ = (qmnk) be a triple analytic of positive

real numbers, then [X?CH,H( (X1,0 ),d(Xg,O),...,d(Xn_l,()))lg]Zst and [A?}‘L, | (d(X1,0),d(X2,0),...
Xn-1,0 )H } are linear spaces.

Proof. 1t is routine verification. Therefore the proof is omitted. O

Theorem 5.2. Let f = (fink) be Musielak-Orlicz function, q = (gmnk) be a triple analytic of positive real

numbers and [Xiu’ II(d(X1,0),d(X2,0),...,d(X,—1,0))] } is a paranormed space with respect to the
paranorm defined by

g(x)Zinf{[fmnk (Hank(X),(d(X1,0),d(X2,0),.,_’d( L] )]qmnk 1}.

Proof. Clearly g (X) > 0 for X = (Xuk) € [X?CH,H( (X1,0),d(X2,0),...,d(Xn-1,0))]l } . Since

Jmnk (0) =0, we get g (0) = 0.
Conversely, suppose that g (X) = 0, then

. dmnk
inf { [ Fne (It (X (4(X1,0),d (X2,0),,..,d (X0, 0),) | < 1}
Suppose that fi,,k (X) # 0 for each m,n, k € N. Then
tmni: (X)), (d (X1,0),d (X2,0),...,d(Xn-1,0))[f — oco.

It follows that

([t (s () (0 (30,0)d (X2,0) o (K0, )| ) o,

which is a contradiction. Therefore fi,,, (X) = 0. Let

([ (s (), (@X2,0),d(X5,0),. . d (e, ), ] ) 7 51

and
([t (it ) (031,00 0 (35,0) .. a (X 0, )] ) <1

Then by using Minkowski’s inequality, we have

([fmnk (H,umn(X+Y),(d(Xl,O)yd(X%O)?“"d( Lol >]qmnk>1/H
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1/H

< ([t (e (). (@ (X1.0) . A (X2.0) ... d (X0, )| ™)
([ (e (V) (@ (X1,0) (X2, 0) .o d (Xt O], )| )

1/H

So we have
g(X +Y) =it { [ frun (Iptmns (X +Y), (d(X1,0),d(X2,0) ..., d (X0 1,0))], )] < 1}
{

<mf{ Fe (It (X) 5 (X200, (X2,0) ..., d (X1, 0}, ) | < 1}
1

Therefore,
gX+Y)<g(X)+g(Y).

Finally we prove that the scalar multiplication is continuous. Let A be any complex number. By definition,
g OX) = i { [ frnne (Iltmae AX) 4 (d(X1,0),d (X2,0),...d (X1, 0], ) | <1}
Then
g (AX) = it { (A% [ fruni ([lmn (AX) (d (X1,0) ,d (X2,0) ... d (X1, O, ) | < 1]
where t = W Since |A|7F < max (1, |\[*"PPmnk) | we have

g (AX) < max (1, [A["PPmnt)
. dmnk
(???)1nf{tqm"k/H: [fmnk (Humnk (AX), (d (X1,0),d (X5,0) ,....d(Xn_1,0))] )} 1}.
This completes the proof. O

Proposition 5.3. If 0 < gpnk < Pmnk < 00 for each m, n, and k, then

[AS Wbt (), (@ (X1,0) 1 d (X2,0) ., d (X1, 0))] }

st

€ A% s (), (4(X1,0), (33,0 (0]
Proof. The proof is standard, so we omit it. O

Proposition 5.4.
(l) If() < inf mnk < Gmnk < 1; then

3

I
(A Nttt () (@ (X1,0),d (X2,0) ..o d (X1, 0]
© (M s (). (010,000 (2,00 (1, 0D

(11) If 1 < gnk < SUP Grnk < 00, then

(8% ke (X) (@ (X1,0),d (X3,0),...d (X -1,0))] ]

C A Wttt (), (d(X1,0),d (X2,0) ..., d (X1, 0)) ]
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Proof. The proof is standard, so we omit it. O

Proposition 5.5. Let f = (f;,mk> and f” = (f;;nk> are Musielak-Orlicz functions, we have

(%t ()., (6(X0,0), 4 (52,0) .. d (61, 0]
I3

MY [AF o it (X) (4 (X2,0) . (X2,0)... -,d<Xn—170>>”“”L

TS

C (A% e (X),(d(X1,0),d (X5,0) ..., d (X -1,0) }
Proof. The proof is easy so we omit it. O

Proposition 5.6. For any Musielak-Orlicz function f = (fink), let ¢ = (¢mnk) be a triple analytic of
positive real numbers. Then

8 D (X), (02,00 (%5,0)-—. (K1, 0)E]

st

© [AS8 Ti (X) (@061,0) d(X2.0) .o (Kar O],

Proof. The proof is easy so we omit it. O

3

Proposition 5.7. Let [Aj’:;, ptomne (X)), (d (X1, 0) ,d(XQ,O),...,d(Xn_l,O))H;’]H is solid.

rst

PT’OOf. Let X = (ank') € [A§i7 Hﬂmnk‘ (X) ) (d (XI)O) 7d(X2a0)7' : ad( n—1, ))” i| , Le.,

sup [A?}(l]“H:U’mnk(X)7(d(X1’0)’d(X2’0)"”’d( n=l ))H } <o

mn

Let (aymnk) be triple sequence of scalars such that |,k < 1 for all m,n,k € N x N x N. Then we get
3 r

sup [A, [t (0X), (d(X1,0),d (X2,0),..d (Xn 1, )]

S sup [Ai(fu H/j/mnk (X)7<d<X170>7d(X270)77d( n—1, ) H i|

This completes the proof. O

Proposition 5.8. The sequence space [A?/Iﬂ | ttmnk (X)), (d(X1,0),d(X2,0),...,d(Xn-1,0))|| } s mono-

tone.
Proof. The proof follows from Proposition 5.9. Ul

Proposition 5.9. If f = (fiunk) be any Orlicz function, then
(A i (X) . (d (3,00, (X5,0),..... Jd (Xp_1, 0))||;§*}6

a
p erst

C MG It (X)(d(X1,0),d(X,0) -, d (X1, 0))]

if and only if sup, s ;>4 %z: < 0.
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I3

Proof. Let @ € [, |tk (X) ., (d(X1,0),d (X,0),...d(Xn1,0)) ]
Then we get

and N = sup, g ;> % < o0.

rst

3

* K I
(Afte s (X, (d(X1,0) . d (X2,0) ... d (X, )]
3

* I
= N[ A gk (X) 5 (d (X1,0),d (X,0),.d (@, O[5 =0,

erst

3

3k I
us r € s | mn , 1,0), 2,0),..., n—1, . Conversely, suppose that
Th AL pn (X)), (d(X1,0) ,d (X3, 0 d(Xpn-1,0))[¢ C 1 h

grst

3

ey
[Afhe Tt () (d(X0,0). . (X2,0) ... d (X )

3

* %k I
C AT N (X) (d/(X1.0),d (X2,0) ... (X1 O)

rst

a?
and X € [AF, tmnt (X), (d/(X1,0),d (X2,0) .., d (Xo-1,0))§°] - Then
rst
I3

[A?,{u ”:U’mnk (X) s (d (le O) ,d (XQ’O) Yo ’d(anl’ O))Hg*} <

erst

for every € > 0. Suppose that sup,sq ¢>14>1 % = 00, then there exists a member (7gpcSapctabe) Such that
=T =r= rst

oy

: t
limy, s,petape—o0 W = 0o. Hence, we have

TabeSabetabe

. 17
[Aj’fi, tonts (X)), (d (X1,0),d (X2,0), ... ,d(Xn_l,O))H]f”fL =co.
Therefore X ¢ [A%, | tmnk (X) 5 (d(X1,0),d (X2,0),...,d(Xn-1,0)[f ] , which is a contradiction.

rst

This completes the proof. O

Proposition 5.10. If f = (fiunk) be any Musielak Orlicz function, then

I3

(A2 e (). (€(X0,0) . (X2,0) . (K1, O]

rst
3

* % I
= [ A3ttt (X) (A (X1,0) .4 (X2,0) .o d (Xnon, O

Grst
~f d l f Pt < Prat >
if and only if sup, s ;>q ok 00, SUPy. 5 t>1 ¥ 00.
rst rst
Proof. 1t is easy to prove, so we omit it. O

13
Proposition 5.11. [X?J)‘[/IN [tmnk (X)), (d(X1,0),d (X2,0),...,d(Xn-1,0)|I7 , is not solid.

t

Proof. The result follows from the following example. O
Example 5.12. Consider
11
11

e I3
X = (o) = | | & [t (X) (0 (X1,0),d (X2,0) o (Xnn )]
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Let
_1m+n+k _1m+n+k . _1m+n+k
_1m+n+k _1m+n+k . _1m+n+k
Umnk =
_1m+n+k _1m+n+k . _1m+n+k

3

I
for all m,n, k € N. Then apmt Xk & | XL |t (X)), (d (X1,0),d (X2,0).,.. .,d(Xn_l,o))Hﬂg . Hence

rst
I3

[ e (X) (@ (X51,0),d (X5,0) ... d (X 1,0))[[¢]is ot solid.

rst

Proposition 5.13. [Xﬁi,||umnk (X),(d(X1,0),d(X2,0),...,d(Xp_1,0))]| } is not monotone.

Proof. The proof follows from Proposition 5.14. O
I3
Proposition 5.14. Let [x(f%, [l (X) , (4 (X1,0),d (X2,0) ... d (Xum1, O)IIF | and [xJL, [[tmni (V).
rst
3

I
(d(X1,0),d(X2,0),...,d(Xn-1,0)) Hﬂ be three elements €355 such that

rst

% Nt (X) (@ (X1,0),d (X2,0) .., d (Xn-1,0)| ]

pP-13 299 3q ® !
< <...>[rfw||umnk<y>,<d<X1,o>,d<X2,o>,...,d<Xn_1,o>>H,,}9 ,

rst

then there exists an element [X%, |tk (Z2), (d(X1,0),d(X2,0),...,d(Xn-1,0))]| } €3 SPE such that
X it (X), (d(X1,0),d.(X2,0) ..., d (X 1,0)) }
<P_X3 [X;ia||Hmnk(Z)a(d(X1a0)7d(X230)aad( n—1, ))H ]

<P_X3 [X?J)c(fl«’H:umn(Y)v(d(Xl’O)’d(X2’0)’7d( n=b ))H }

Proof. Let [xiz,y\umnk (). (431,00, (X20)...d (Kt O } and [\

d(X2,0),...,d(X,-1,0 )H } €3 SPF be such that

Pk (Y) (d (X1,0),

D Mt (X, (d(X1,0),d(X2,0) ..., d (Xn1,0))| }
<P [ i (V) (@(X0,0), 4 (X2,0) - d (51, 0)IE]

Define the sequence

D Mtk (2) (A (X1,0),d(X2,0) ..., d (Xo1,0))] }

<P [ It (2), (01061,0) 0 (X2, 0) o (K O]

as follows

X Nt (2)(d (X1,0),d (X2,0) ..., d (X1, 0))] ]
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IS
©
- [xj’z‘;, o (X17) 1 (d(X1,0),d.(X2,0) ..., d (X-1,0))| ]
p er'st
13
® [szi, e (Y7 (A (X1,0),d (X2,0),...d (Xp-1,0) | ]
Grst
This implies that
[X§i7H,umnk:(X)7(d(X1¢O)7d(X2aO)7ad( n—1, ))H }
IS
<P_X3 [X?fiv”ﬂmnk (Z)v(d(XlaO)vd(X%o)a7d(Xn—170))H;§}9
P—x3 | 3q r
<P [\ s (V) (@ (X1,0) . (X2,0) ..., d (X1, 0)) I
rst
0
Theorem 5.15. Let
[X?}LZNHank(X)7<d(X170)7d(X270)77d< n—1, ) H :|
43
<P Ntk (V) (d (X3, 0),d (X5,0),.., d (X1, 0)) }
and
0t (V) (d (X1,0),d (X5,0) ... d (X1, 0))] ]
U3
< [ i (2, (30,0, 4 (X2,0),od (Ko, D]
then
0t (X) ,(@(X1,0),d (X2,0) ..., d (Xp-1,0) }
.3
<F [ Dt (2), (4 (0,00, (35,0 o0 (s O]
Proof. The proof is omitted as it is straightforward. O

Theorem 5.16. Let A be a non—negative 3BE\3BE summability matriz and let [X?c%“ﬂmnk (X) ,(d (X1,0),

I3
d(X270)7"'7 Xn-1,0 )H } . and [X;z,,:”ﬂmnk (Y)a<d(X1a0>?d(X270)a7d(Xn—1a0>)H§]0 . be two

elements in 3¥ such that
[ it (X0, (00,00, (5,00 (K1, 0))E] L

P {Xj;i,Humnk(Y),(d(Xl,O),d(XQ,O),...,d( n-1,0))]] }

st
with

[ Ntk (X, (d(X1,0),d(X2,0) .., d (X1, >>||} €3 SET
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and
8 Dt (V) (4(30,0), 32,0 o d (X )] <6
for some 6 > 0, then
[0 Ntk (AX) (@ (X1,0),d (X3,0),...d (Xp-1,0))] }
<P [0 itk (AY)  (@(X1,0),d (X2,0) ., d (X, >>||} )

Proof. Since
8 Dt (X), (01,00, (55,0) - (K1, 0))E] L

<P Nt (V) 1 (d (X1,0),d(X2,0) ..., d (X1, 0))] ] ’

then there exists an analytic triple sequence [X?i, | ttmnk (Z), (d(X1,0),d(X2,0),...,d(Xn-1,0))] ]

st
with Pringsheim’s limit zero such that

8 i (), (0X2,0),(55,0) .. (K, 0D
=[50 s (V) (d(X1,0),d (X2,0),..d (X 1,0)) }
® X i (2)  (d (X1,0),d (X2,0).,....d (Xo1,0))] ]

For each a,b and ¢, we have

3

[X?c(f“ Humnk (AX> ) (d (leo) 7d (XQ’ 0> rrr d(Xn_1’0)>H§:|9

rst

I3
[X?c(f“ Humn (AY) ’ (d (X17O) yd (X2’ 0> i d(Xn—17O)>H§:|0 t
13

SUPy s e [0 [t (AX) , (d(X1,0) 1 (X2,0) .. d (X1, 0)[F]

rst

73
SUPr s t>a,b,c [X?IJN ”:U’mnk (AY) ) (d (Xla 0) 7d (X27 O) ) vd (anla 0))”5} Oras

Supr,s,tZa,b,c Z?no:fk:Ll,l [X?‘(Zu Hﬂ'mnk (AX) ) (d (Xl, O) 7d (XQa 0) PR d( n—1, ))” i|

'rst

, 3
By St [ Dt (AY)(d(X4,0),d (X3,0)-..d (X 1, 0)E])

SUPr s t>k,¢ Zqizo,’;?kzl,l,l [X;‘i’ HNmnk (A (Y ® Z)) ) (d (Xl, O) .d (X27 0) yee 7d( n—1, ))H ]

00,00 3
SUPr s t>a,b,c Zm,n,kzl,l,l [Xf(,]u ||Nmnk (AY) ) (d (X17 0) .d (X27 0) IR d( n—1, ))” }

00,00 13
= s > e X Itk (V)5 (d(X1,0),d (X2,0) ..., d (X1, 0))¢]
T757t2a»b7c m,n,k:l,l,l erst
00,00
X |:X?])C(ZL’ ”,Ufmnk (Z),(d(Xl,O),d(XQ,O),,d( n—1, ))H /5 sup Z Qr.s.gmn,k-

rstmstzabe 1
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Since Y and Z are triple analytic sequences with Z is in x3f and A is a non-negative x>/ — x3f" matrix,
then

00,00

P — sup Z ar,s,t,m,n,k [X?fp”/’bmnk (Y)a(d(XbO))d(X?vO)avd( n—1, ))H ]

r,s,t>a,b,c mon,k=1,1,1

{X%,Humnk(Z)7(d(X1’O)7d(X2’0)""’d n-1,0))]| ] =0.

Hence
- 13

X;‘Z)Humnk (AX)7(d(X170)7d(X270)77d(X7l—170))”<p 0
P — lim - Lo <, (5.1)
X?Lv””mnk (AY)a(d(X17O)7d(X27O)’7d(XTL—17O))HLp

In a similar manner we can establish

- 97'st

- - I3
X?”;IN H/’Lmnk (AX) > (d (X17 0) yd (X270) 3. 7d(XTL—17 0))”99 0

P —lim = _'I;“ > 0. (5.2)

3
_Xftiu ”:U’mnk (AY) ’ (d (Xho) 7d(X27 0) o 7d(X7l—170))HLp_ 0,1
From (5.1) and (5.2), we have

- .13
X?”;IN H/’Lmnk (AX) ) (d (X17 O) 7d(X27O) PR 7d(XTL—17 O))Hz 0

P —lim - “Orst — ),

[X?CZ, | temn (AY), (d(X1,0),d (X2,0),...,d(Xpn-1, 0))”?};

rst
which implies
IS

X it (AX) (4 (X1,0),d (X2,0) -, d (X1, O]

rst

P [Xi;zunﬂmnk (AY), (d(X1,0),d (X2,0),...,d(X,-1,0))| ]

O
3

I
Theorem 5.17. Let [X?J"I/IN | termnk (X), (d(X1,0),d (X2,0),...,d(Xp—1, 0))||ﬂ9 € S3BY and A be a trans-

TS

formation such that
13
[X?c(i, Humnk (AX) ) (d (X17O) yd (X2’ 0) R d(Xn_l,O))HSO:|9 t
<P [ it (X) ,((X1,0),d (X0,0) ..., d (X 1,0) ]

I3
Then there exists [X?”(ib’ | ttmnk (X)), (d(X1,0),d(X2,0),...,d(Xn-1, O))Hi]e € 3B such that
rst

8 s (V) 4 (X1,0),(32,0) o d (o1 O]
73

= |7t N <Y>,<d<X1,o>,d<X2,o>,...,d<Xn_1,o>>||;§}9 (m,n.k)

rst

and

Dt (AY ) (d (X1,0),d (X2,0),...,d (X1, 0))]| ]
13

A3
<P X |:X§'(L7H/"Lmnk (Y)y(d(leo)ad(X27O)77d(Xn—170))”§:|0

rst
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Proof. Let [X:;Z, |tk (X)), (d(X1,0),d(X2,0),...,d(Xn-1,0))| } € S3BF . Then there exists a subset
B; ¢ Nx N x N with é3 (B1) = 1 such that

P — [X%pHank(X)?(d<X170>7d(X270)a"'7d( n—1, ) H ] :07

over Bj. Let {X?&, | emangke (X)), (d(X1,0),d(X2,0),...,d(Xn-1,0))| ] € SgBF. Then there exists a
subset By C N x N x N with 3 (B2) = 1 such that

P — [X?i?“/’[/manbkc (X)7<d(X1?0)7d(X270)7"'7d< n—1, ))H } =0,

rst

over By. Since

[ T (AX), (650,04 (X2,0).-,d (%1, 0)IE]

<P [t (X) (@ (X5,0),d (X5,0) - d (X1, >>”] ’

we have

X Bt (), ((X1,0),d(X2,0) -, d (K1, O]
P —lim -0

I3
X N (X) (@ (X1,0)d (X2,0) o (Xt O)E]

Then there exists a subset Bs C N x N x N with d3 (Bs) = 1 such that

I3
e it (X) (A (X1,0),d (X2,0) ... d<Xn—170>>”“JL
P —lim =0

5% Nt (X) (@ (X1,0),d (X2,0) ..., d (Xn1,0)) }

over Bs. Let D = By () Ba2()Bs. Then clearly d3 (D) = 1.
For r # myg, s # np,t # k. € N X N x N, let us define

s e (Y) 1 (d (X1,0) ,d (X2,0) ... d (X1, 0) ]

st

73
3q
7” rst(X)v(d(X ’O)’d(X ’0)7"~:d(an 70))”@
_ [Xfu e 1 (rst)i?) 1 p]grst7 if (T,S,t) c D,

0, otherwise.

and

8 Wt (V)@ (51,00, (3,0, d (1, O]

[ many ke ()(A(X1,0),d(X2,0),0.0sd(Xn—1.0 H] t

_ 3 if (a,b,c) € D,
- [szvHNmnk(Y)7(d(X170)7d(X270)7“'7d(Xn—17 ))”p]erst(mnk)

0, otherwise.
3

I
Then we have [Xj;‘;, tmnte (Y, (d (X1,0),d (X2,0) ..., d(Xn_1, o>)||ﬂ9 € S3BF . Then we have

rst

I3
X Tt (), (4(X1,0), (X2, 00, d (X, O
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= [0 Mt (), (@ (X51,0) (X2, 0), ., (X1, >>H] (m, . k)

and this implies
A N (V) (@(X0,0), 4 (52,0) .-, d (%1, 0)IE]

<P [N i () ((51,0),d(X2,0) o d (1, O]

O
3

I
Theorem 5.18. Let [X?‘(l]“ ||umnk (X) ) (d (Xl,O) 7d(X27 0) yoeesd (Xn—lvo))H;f]e € SgBF and A be a trans-

rst

formation such that

[X;Z?H,umnk(AX)>(d(X1>0)7d(X270)>"'7d( n—1, ))H :|

st

<P [N (), (0106,0),0 (63,0) - d (K1, O]

Then there ezists a [X?}‘zu |tk (Y), (d(X1,0),d(X2,0),...,d(X,-1,0))| } € S3BY such that

5% lttmn (), (@(X1,0),d (X5,0) ..., d (Xp-1,0)| }

< [ i () (4 (51,0),(X2,0) o d (a1 O]

and

[ i (AY) . (X1,0), (X0 (o D]

<P [ ot (V) (0X0,0), (3,0 ., (X1, O]

st

Proof. Consider

[ i () (X1,0), (X2,0) .o d (X1 O]
I3

= [t It (X) (@ (X1,0),d (X5,0).... ,d<Xn,1,o>>||;§}9

rst

for all m,n,k € N. Then clearly [X?‘i’ | temnk (Y), (d(X1,0),d(X2,0),...,d(X,—1,0))] } € S3BE such
that

[ Dt (X), (41,00, (35,00 (K1, 0D
<P Tt (V) (d(X1,0),.(X2,0) -, d (X 1,0))] ]
and

[X?fzpH,umnk(AY)>(d(X170)ad(X2>O)>"'>d( n—1, ))H :|

st

< [F?}Zj”ank(y)’(d<X1,O)7d(X2,O),...,d( n—1, ))H ]
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6. Conclusion

In this paper all the definitions are newly constructed and then construct with difference of triple sequence
space of x3, the new theorems are construct with some aspects. But our paper deals with metric condition
of triple sequence space adopted with randomness and acceleration is a new contribution.
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