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Abstract

In the present manuscript, we prove some results concerning the existence of solutions for some nonlinear
functional-integral equations which contains various integral and functional equations that considered in
nonlinear analysis and its applications. By utilizing the techniques of noncompactness measures, we operate
the fixed point theorems such as Darbo’s theorem in Banach algebra concerning the estimate on the solutions.
The results obtained in this paper extend and improve essentially some known results in the recent literature.
We also provide an example of nonlinear functional-integral equation to show the ability of our main result.
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1. Introduction and Preliminaries

Since the year 1922, Banach contraction principle, due to its simplicity and applicability, has became a
very popular tool in modern analysis, especially in nonlinear analysis including its applications to differen-
tial and integral equations, variational inequality theory, complementarity problems, equilibrium problems,
minimization problems and many others. Also, many authors have improved, extended and generalized this
contraction principle in several ways. Existence of fixed points in ordered metric spaces has been initiated
in 2004 by Ran and Reurings [17] further studied by Nieto and Rodriguez-Lopez [15]. Samet and Vetro [18]
introduced the notion of fixed point of N order in case of single-valued mappings. It should be noted that
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through the coupled fixed point (for N = 2) and tripled fixed point (for N = 3) technique, we cannot solve
a system with the following form:

x3 + 6yz − 9x+ 12 = 0,

y3 + 6xz − 9y + 12 = 0,

z3 + 6yx− 9z + 12 = 0.

In particular for N = 3 (Tripled case) i.e., Let (X,⪯) be partially ordered set and (X, d) be a complete
metric space. We consider the following partial order on the product space X3 = X ×X ×X.
It is well-known that the differential and integral equations that arise in many physical problems are mostly
nonlinear and fixed point theory provides a powerful tool for obtaining the solutions of such equations which
otherwise are difficult to solve by other ordinary methods.

Beside this Maleknejad et al. [13, 14] examined the existence of solutions for the nonlinear functional-
integral equations (for short NLFIE) of the form

x(t) = g(t, x(t)) + f

(
t,

∫ t

0
u(t, s, x(s))ds, x(α(t))

)
(1.1)

and

x(t) = f(t, x(α(t))

∫ t

0
u(t, s, x(s))ds, (1.2)

respectively, by availing the Darbo fixed-point theorem with suitable combination of measure of noncom-
pactness defined in [1]. Banaś and Sadarangani [7] as well as Maleknejad et al. [12] discussed the existence
of solutions for NLFIE

f

(
t,

∫ t

0
v(t, s, x(s))ds, x(α(t))

)
.g

(
t,

∫ a

0
u(t, s, x(s))ds, x(β(t))

)
. (1.3)

Banaś and Rzepka [5, 6] dealt the existence of solutions of NLFIE and nonlinear quadratic Volterra integral
equation

x(t) = f(t, x(t))

∫ t

0
u(t, s, x(s))ds, (1.4)

x(t) = p(t) + f(t, x(t))

∫ t

0
v(t, s, x(s))ds, (1.5)

respectively. The popular nonlinear Volterra integral equation and Urysohn integral equation are given as
follows

x(t) = a(t) +

∫ t

0
u(t, s, x(s))ds, (1.6)

x(t) = b(t) +

∫ a

0
v(t, s, x(s))ds, (1.7)

respectively. Dhage [9] discussed the following nonlinear integral equation

x(t) = a(t)

∫ a

0
v(t, s, x(s))ds+

(∫ t

0
u(t, s, x(s))ds

)(∫ a

0
v(t, s, x(s))ds

)
, (1.8)

Moreover, the familiar quadratic integral equation of Chandrasekhar type [8] has the form

x(t) = 1 + x(t)

∫ a

0

t

t+ s
ϕ(s)x(s)ds, (1.9)
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which is applicable in the theories of radiative transfer, neutron transport and kinetic energy of gases (see
[8, 11]). In this paper, we study the existence of solutions of NLFIE

x(t) =

(
q(t) + f(t, x(t), x(θ(t))) + F

(
t, x(t),

∫ t

0
u(t, s, x(a(s)))ds, x(b(t))

))
×

(
r(t) + g(t, x(t), x(ϑ(t))) +G

(
t, x(t),

∫ a

0
v(t, s, x(c(s)))ds, x(d(t))

))
(1.10)

for t ∈ [0, a]. It is worthwhile mentioning that up to now equations 1.1-1.9 are a particular case of equation
1.10. Moreover, NLFIE 1.10 also involve with the functional equation of the first order having the form
x(t) = f(t, x(t), x(θ(t))) and x′(t) = g(t, x(t), x(ϑ(t))). This paper investigates existence of solutions of
NLFIE 1.10 under some relevant results of fixed point theorem for the product of two operators which
satisfies the Darbo condition with suitable combination of a measure of noncompactness in the Banach
algebra of continuous functions in the interval [0, a]. The existence results are interesting in themselves
although their solutions are continuous and stable.

2. Definitions and preliminaries

This section is devoted to revise some data which will be required in our further circumstances. Let E is
a real Banach space with the norm ∥ · ∥ and zero element θ′. Symbolically B(x, r) represents the closed ball
centered at x and with radius r, as well as we indicates by Br the ball B(θ′, r). The notation ME appears
for the family of all nonempty and bounded subsets of E and notation NE also appears for its subfamily
consisting of all relatively compact subsets. Additionally, if X( ̸= ϕ) ⊂ E then the symbols X , ConvX in
consideration of the closure and convex closure of X, respectively. We exercise the definition on the concept
of a measure of noncompactness [1] as follows.

Definition 2.1. Let X ∈ ME and

µ(X) = inf {δ > 0 : X = ∪m
i=1Xi with diam(Xi) ≤ δ, i = 1, 2, . . .m} ,

where for a fixed number t ∈ [0, a], we denote

diamX(t) = sup{|x(t)− y(t)| : x, y ∈ X},

Clearly, 0 ≤ µ(X) < 1. µ(X) is called the Kuratowski measure of noncompactness.

Theorem 2.2. Let X,Y ∈ ME and λ ∈ R. Then

(i) µ(X) = 0 if and only if X ∈ NE,

(ii) X ⊆ Y ) =⇒ µ(X) ⊆ µ(Y ),

(iii) µ(X) = µ(ConvX) ≤ µ(X),

(iv) µ(X ∪ Y ) = max{µ(X), µ(Y )},
(v) µ(λX) = |λ|µ(X), where λX = {λx : x ∈ X},
(vi) µ(X + Y ) ≤ µ(X) + µ(Y ), where X + Y = {x+ y : x ∈ X, y ∈ Y },
(vii) |µ(X)− µ(Y )| ≤ 2dh(X,Y ), where dh(X,Y ) denotes the Hausdorff metric of X and Y , i.e.

dh(X,Y ) = max{sup
y∈Y

d(y,X), sup
x∈X

d(x, Y )},

where d(., .) is the distance from an element of E to a set of E.

Furthermore, every function µ : ME → [0, 1), satisfying conditions (i)-(vi) of Theorem 2.2, will be called
a regular measure of noncompactness in the Banach space E (cf. [5]).
Now let us theorize that is a nonempty subset of a Banach space E and S : Ω → E is a continuous
operator, which transforms bounded subsets of Ω to bounded ones. Additionally, let µ be a regular measure
of noncompactness in E.
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Definition 2.3. The continuous operator S satisfies the Darbo condition with a constant K ′ with respect
to measure µ provided

µ(SX) ≤ K ′µ(X),

for each X ∈ ME such that x ⊂ Ω.
If K ′ < 1, then S i s called a contraction with respect to µ.

In the continuation, consider the space C[0, a] is consisting of all real functions defined and continuous
on the interval [0, a]. The space C[0, a] is equipped with standard norm

∥x∥ = sup{|x(t)| : t ∈ [0, a]},

Evidently, the space C[0, a] has also the structure of Banach algebra. Taking into our considerations, we
will utilize a regular measure of noncompactness defined in [2] (cf. also [1]). Let us fix a set X ∈ MC[0,a].
For x ∈ X and for a given ϵ > 0 denote by w(x, ϵ) the modulus of continuity of x, i.e.,

w(x, ϵ) = sup{|x(t)− x(s)| : t, s ∈ [0, a], |t− s| ≤ ϵ}.

Further, put

w(X, ϵ) = sup{w(x, ϵ) : x ∈ X}, w0(X) = lim
ϵ→0

w(X, ϵ).

The function w0(X) is a regular measure of noncompactness in the space C[0, a], which can be shown in [6].
For our purposes we will require the following lemma and theorem [10, 2].

Lemma 2.4. Let D be a bounded, closed and convex subset of E. If operator S : D → D is a strict set
contraction, then S has a fixed point in D.

Theorem 2.5. Let us suppose that is a nonempty, bounded, convex and closed subset of C[0, a] and the
operators P and T transform continuously the set into C[0, a], just like that P (Ω) and T (Ω) are bounded.
Furthermore, let the operator S = P.T transform into itself. If the each operators P and T satisfies the
Darbo condition on the set with the constants K1 and K2, respectively, then the operator S satisfies the
Darbo condition on Ω with the constant

∥P (Ω)∥K2 + ∥T (Ω)∥K1.

Remark 2.6. In Theorem 2.5, if ∥P (Ω)∥K2 + ∥T (Ω)∥K1 < 1, then S is a contraction with respect to the
measure w0 and has at least one fixed point in the set Ω.

Now we will identify solutions of the integral equation 1.10.

3. Main Result

In this section, we will study the solvability of NLFIE 1.10 for x ∈ C[0, a], under the following hypotheses.

(A1) The function q : [0, a] → R is continuous and bounded with k = supt∈[0,a] |q(t)|.
(A2) The functions f : [0, a] × R × R → R, F,G : [0, a] × R × R × R → R are continuous and there exists

nonnegative constants l,m such that

|f(t, 0, 0)| ≤ l,

|g(t, 0, 0)| ≤ l,

|F (t, 0, 0, 0)| ≤ m,

|G(t, 0, 0, 0)| ≤ m.
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(A3) There exists the continuous functions aj : [0, a] → [0, a], for j = 1, 2, . . . 10 such that

|f(t, x1, x2)− f(t, y1, y2)| ≤ a1(t)|x1 − y1|+ a2(t)|x2 − y2|,

|g(t, x1, x2)− g(t, y1, y2)| ≤ a3(t)|x1 − y1|+ a4(t)|x2 − y2|,

|F (t, x1, y1, x2)− F (t, x3, y2, x4)| ≤ a5(t)|x1 − x3|+ a6(t)|y1 − y2|+ a7(t)|x2 − x4|,

|G(t, x1, y1, x2)−G(t, x3, y2, x4)| ≤ a8(t)|x1 − x3|+ a9(t)|y1 − y2|+ a10(t)|x2 − x4|,

for all t ∈ [0, a] and x1, x2, x3, x4, y1, y2 ∈ R.
(A4) The functions u = u(t, s, x(á(s))) and v = v(t, s, x(c(s))) act continuously from the set [0, a]× [0, a]×R

into R. Moreover, the functions θ, á, b, c and d transform continuously the interval [0, a] into itself.

(A5) There exists a nonnegative constant K such that

K = max
j

{aj(t) : t ∈ [0, a]},

for j = 1, 2, . . . 10.

(A6) (Sublinear condition) There exists the constants ξ and η such that

|u(t, s, x(á(s)))| ≤ ξ + η|x|,

|v(t, s, x(c(s)))| ≤ ξ + η|x|,

for all t, s ∈ [0, a] and x ∈ R.
(A7) 4στ < 1, for σ = 4K +Kaη and τ = k + l +Kaξ +m.

Now we can formulate the main result of this paper.

Theorem 3.1. Under the assumptions (A1) - (A7), NLFIE 1.10 has at least one solution in the Banach
algebra C = C[0, a].

Proof. To prove this result using Theorem 2.5, we consider the operators P and T on the Banach algebra
C[0, a] in the following way:

(Px)(t) = q(t) + f(t, x(t), x(θ(t))) + F

(
t, x(t),

∫ t

0
u(t, s, x(á(s)))ds, x(b(t))

)
,

(Tx)(t) = r(t) + g(t, x(t), x(ϑ(t))) +G

(
t, x(t),

∫ t

0
v(t, s, x(c(s)))ds, x(d(t))

)
,

for t ∈ [0, a]. Now, taking into account the assumptions (A1), (A2) and (A4), it is clear that P and T
transforms the Banach algebra C[0, a] into itself. Now, the operator S defined on the algebra C[0, a] as
follows

Sx = (Px).(Tx).

Definitely, S transform C[0, a] into itself. Next, let us fix x ∈ C[0, a], then using our imposed assumptions
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for t ∈ [0, a], we obtain

|(Sx)(t)| = |(Px)(t)| × |(Tx)(t)|

= | q(t) + f(t, x(t), x(θ(t))) + F

(
t, x(t),

∫ t

0
u(t, s, x(á(s)))ds, x(b(t))

)
|

× | r(t) + g(t, x(t), x(ϑ(t))) +G

(
t, x(t),

∫ t

0
v(t, s, x(c(s)))ds, x(d(t))

)
|

≤ {k + |f(t, x(t), x(θ(t)))− f(t, 0, 0)|+ |f(t, 0, 0)|

+ |F
(
t, x(t),

∫ t

0
u(t, s, x(á(s)))ds, x(b(t))

)
− F (t, 0, 0, 0)|+ |F (t, 0, 0, 0)|

}
×{k + |g(t, x(t), x(ϑ(t)))− g(t, 0, 0)|+ |g(t, 0, 0)|

+ |G
(
t, x(t),

∫ a

0
v(t, s, x(c(s)))ds, x(d(t))

)
−G(t, 0, 0, 0)|+ |G(t, 0, 0, 0)|

}
≤

(
k + a1(t)|x(t)|+ a2(t)|x(θ(t))|+ l + a5(t)|x(t)|+ a6(t)

∫ t

0
|u(t, s, x(á(s)))|ds+ a7(t)|x(b(t))|+m

)
×
(
k + a3(t)|x(t)|+ a4(t)|x(ϑ(t))|+ l + a8(t)|x(t)|+ a9(t)

∫ a

0
|v(t, s, x(c(s)))|ds+ a10(t)|x(d(t))|+m

)
×{k + 4K∥x∥+ l +Ka(ξ + η∥x∥) +m}.{k + 4K∥x∥+ l +Ka(ξ + η∥x∥) +m}

≤ {(4K +Kaη)∥x∥+ k + l +Kaξ +m}2.

Let σ = 4K +Kaη and τ = k + l + kaξ +m, then from the above estimate, it follows that

∥Px∥ ≤ σ∥x∥+ τ, (3.1)

∥Tx∥ ≤ σ∥x∥+ τ, (3.2)

∥Sx∥ ≤ (σ∥x∥+ τ)2, (3.3)

for x ∈ C[0, a].
From estimate 3.3, we conclude that the operator S maps the ball Br ⊂ C[0, a] into itself for r1 ≤ r ≤ r2,
where

r1 =
1− 2στ −

√
1− 4στ

2σ2
,

r2 =
1− 2στ +

√
1− 4στ

2σ2
.

In the following, we will assume that r = r1. Moreover, let us observe that from estimates 3.1 and 3.2, we
obtain

∥PBr∥ ≤ σr + r, (3.4)

∥PBr∥ ≤ σr + r. (3.5)

Now, we have to prove that the operator P is continuous on the ball Br. To do this, fix ϵ > 0 and take
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arbitrary x, y ∈ Br such that ∥x− y∥ ≤ ϵ. Then for t ∈ [0, a], we have

|(Px)(t)− (Py)(t)|
≤ |f(t, x(t), x(θ(t)))− f(t, y(t), y(θ(t)))|

+ |F
(
t, x(t),

∫ t

0
u(t, s, x(á(s)))ds, x(b(t))

)
− F

(
t, y(t),

∫ t

0
u(t, s, y(á(s)))ds, y(b(t))

)
|

≤ a1(t)|x(t)− y(t)|+ a2(t)|x(θ(t))− y(θ(t))|

+ |F
(
t, x(t),

∫ t

0
u(t, s, x(á(s)))ds, x(b(t))

)
− F

(
t, x(t),

∫ t

0
u(t, s, x(á(s)))ds, y(b(t))

)
|

+ |F
(
t, x(t),

∫ t

0
u(t, s, x(á(s)))ds, y(b(t))

)
− F

(
t, y(t),

∫ t

0
u(t, s, y(á(s)))ds, y(b(t))

)
|

≤ a1(t)|x(t)− y(t)|+ a2(t)|x(θ(t))− y(θ(t))|+ a5(t)|x(t)− y(t)|

+ a7(t)|x(θ(t))− y(θ(t))|+ a6(t)

∫ t

0
|u(t, s, x(á(s)))− u(t, s, y(á(s)))|ds

≤ 4K∥x− y∥+Kaw(u, ϵ)

≤ 4Kϵ+Kaw(u, ϵ),

where

w(u, ϵ) = sup{|u(t, s, x)− u(t, s, y)| : t, s ∈ [0, a], x, y ∈ [−r, r], ∥x− y∥ ≤ ϵ}.

In view of uniformly continuous of the function u = u(t, s, x) on the bounded subset [0, a]× [0, a]× [−r, r],
we have that w(u, ϵ) → 0 as ϵ → 0. Thus, from the above inequality the operator P is continuous on Br.
Similarly, the operator T is also continuous on Br. Hence, we conclude that S is continuous operator on
Br. Next, we prove that the operators P and T satisfies the Darbo condition with respect to the measure
w0, defined in Section 2, in the ball Br. To do this, we take a nonempty subset X of Br and x ∈ X. Let
ϵ > 0 be fixed and t1, t2 ∈ [0, a] with t2 − t1 ≤ ϵ and we can assume that t1 ≤ t2. Then, taking into account
our assumptions, it follows

|(Px)(t2)− (Px)(t1)|
≤ |q(t2)− q(t1)|+ |f(t2, x(t2), x(θ(t2)))− f(t1, x(t1), x(θ(t1)))|

+ |F
(
t2, x(t2),

∫ t2

0
u(t2, s, x(á(s)))ds, x(b(t2))

)
− F

(
t1, x(t1),

∫ t1

0
u(t1, s, x(á(s)))ds, x(b(t1))

)
|

≤ w(q, ϵ) + |f(t2, x(t2), x(θ(t2)))− f(t2, x(t1), x(θ(t1)))|+ |f(t2, x(t1), x(θ(t1)))− f(t1, x(t1), x(θ(t1)))|

+ |F
(
t2, x(t2),

∫ t2

0
u(t2, s, x(á(s)))ds, x(b(t2))

)
| − F

(
t2, x(t1),

∫ t1

0
u(t1, s, x(á(s)))ds, x(b(t1))

)
|

+ |F
(
t2, x(t1),

∫ t1

0
u(t1, s, x(á(s)))ds, x(b(t1))

)
| − F

(
t1, x(t1),

∫ t1

0
u(t1, s, x(á(s)))ds, x(b(t1))

)
|

≤ w(q, ϵ) + a1(t)|x(t2)− x(t1)|+ a2(t)|x(θ(t2))− x(θ(t1))|+ wf (ϵ, ., .) + a3(t)|x(t2)− x(t1)|

+ a6(t)

∫ t2

0
u(t2, s, x(á(s)))ds−

∫ t1

0
u(t1, s, x(á(s)))ds|+ a7(t)|x(b(t2))− x(b(t1))|+ wF (ϵ, ., ., .)

≤ w(q, ϵ) + 2Kw(x, ϵ) +Kw(x,w(θ, ϵ))

+ wf (ϵ, ., .) +K

{∫ t1

0
|u(t2, s, x(á(s)))− u(t1, s, x(á(s)))|ds+

∫ t2

t1

|u(t2, s, x(á(s)))|ds
}

+Kw(x,w(b, ϵ)) + wF (ϵ, ., ., .)w(Px, ϵ) ≤ w(q, ϵ) + 2Kw(x, ϵ) +Kw(x,w(θ, ϵ))

+ wf (ϵ, ., .) +K{wu(ϵ, ., .)a+K ′ϵ}+Kw(x,w(b, ϵ)) + wF (ϵ, ., ., .) (3.6)
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where

wf (ϵ, ., .) = sup{|f(t, x1, x2)− f(t0, x1, x2)| : t, t0 ∈ [0, a], |t− t0| ≤ ϵ, x1, x2 ∈ [−r, r]},
wu(ϵ, ., .) = sup{|u(t, s, x)− u(t0, s, x)| : t, t0 ∈ [0, a], |t− t0| ≤ ϵ, x ∈ [−r, r]},

wF (ϵ, ., ., .) = sup{|F (t, x1, y1, x2)− F (t0, x1, y1, x2)| : t, t0 ∈ [0, a],

|t− t0| ≤ ϵ, x1, x2 ∈ [−r, r], y1 ∈ [−K ′a,K ′a]},
K ′ = sup{|u(t, s, x)| : t, s ∈ [0, a], x ∈ [−r, r]}.

Since, the functions q = q(t), f = f(t, x1, x2) and F = F (t, x1, y1, x2) are uniformly continuous on the set
[0, a], [0, a] × R × R and [0, a] × R × R × R, respectively, and the function u = u(t, s, x) is also uniformly
continuous on the set [0, a] × [0, a] × R. Hence, we deduce thatw(q, ϵ) → 0, wf (ϵ, ., .) → 0, wu(×, ., .) → 0
and wF (ϵ, ., ., .) → 0 as ϵ → 0. Thus, from the above estimate (3.6) we conclude

w0(PX) ≤ 4Kw0(X). (3.7)

Similarly, we can show that
w0(TX) ≤ 2Kw0(X). (3.8)

Finally, from the estimates 3.4, 3.5, 3.6, 3.7 and keeping in mind Theorem 2.5, we conclude that the operator
S satisfies the Darbo condition on Br with respect to the measure w0 with constant 4K(σr+τ)+2K(σr+τ).
Thus, we have

6K(σr + τ) = 6K(σr1 + τ) = 6K

{
σ

(
(1− 2σr)−

√
1− 4στ

2σ2

)
+ τ

}
=

3K

σ
(1−

√
1− 4στ).

Taking into account the assumption (A7), since 1 −
√
1− 4στ < 1 and 3K

σ = 3K
4K+Kaη < 1, therefore, the

operator S is a contraction on Br with respect to measure w0. Thus, S has at least one fixed point in the
ball Br, by applying Theorem 2.5 and Remark 2.6. Consequently, the NLFIE 1.10 has at least one solution
in the ball Br.

4. Example

Now, we begin with an example of a NLFIE and to illustrate the existence of its solutions by using
Theorem 3.1.

Example 4.1. Consider the following NLFIE.

x(t) =
[
te−(t+3) +

t

7(1 + t)
arctan |x(t)|+ t

16
ln(1 + |x(1− t)|)

+
1

12

∫ t

0
(
cos(x(1− s))

3
+ 2t arctan(

|x(1− s)|
1 + |x(1− s)|

)ds
]

×
[
cos(

te−t

1 + t
) +

1− t

3(1 + t)
arctan |x(t)|+ t

13
ln(1 + |x(1 + t)|).

+
1

17

∫ 1

0
(
t sinx(

√
s)

3
+ (1 + t) ln(1 + |x(

√
s)|))ds

]
(4.1)

where t ∈ [0, 1]. Observe that equation 4.1 is a particular case of equation 1.10. Let us take q : [0, 1] → R,
f : [0, 1] × R × R → R, F,G : [0, 1] × R × R × R → R and u, v : [0, 1] × [0, 1] × R → R and comparing 4.1
with equation 1.10, we get

q(t) = te−(t+3), f(t, x1, x2) =
t

7(1 + t)
arctan |x1|+

t

16
ln(1 + |x2|),
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r(t) = cos

(
te−t

1 + t

)
, g(t, x1, x2) =

1− t

3(1 + t)
arctan |x(t)|+ t

13
ln(1 + |x(1 + t)|),

F (t, x1, y1, x2) =
1

12
y1, G(t, x1, y1, x2) =

1

17
y1,

u(t, s, x) =
cosx

3
+ 2t arctan

(
|x|

1 + |x|

)
, v(t, s, x) =

t sinx

3
+ (1 + t) ln(1 + |x|),

then we can easily test that the assumptions of Theorem 3.1 are satisfied. In fact, we have that the function
q(t) is continuous and bounded on [0, 1] with k = e−4 = 0.0183156 . . . . Thus, the assumption (A1) is
satisfied. Moreover, these functions are continuous and satisfies the assumption (A3) with a1 = 1

14 , a2 =
1
16 , a3 = a5 = a6 = a8 = 0, a4 =

1
12 , a7 =

1
17 . In this case, we have

K = max{ 1

14
,
1

16
,
1

9
,
1

13
,
1

12
, 0,

1

17
} =

1

9
.

Further,
|f(t, 0, 0)| = 0, |g(t, 0, 0)| = 0, |F (t, 0, 0, 0)| = 0, |G(t, 0, 0, 0)| = 0,

|u(t, s, x)| ≤ 1

3
+ 2|x|, |v(t, s, x)| ≤ 1

3
+ 2|x|.

It is observed that l = m = 0, ξ = 1
3 , η = 2 and a = 1. Finally, we see that

4στ = 4(4K +Kaη)(k + l +Kaξ +m) < 1.

Hence, all the assumptions from (A1) to (A7) are satisfied. Now, on the basis of result obtained in Theorem
3.1, we deduce that NLFIE 4.1 has at least one solution in Banach algebra C[0, 1].

Remark 4.2. • If we take
q(t) = r(t) = g(t, x(t), x(ϑ(t))) = 0,

G

(
t, x(t),

∫ a

0
v(t, s, x(c(s)))ds, x(d(t))

)
= 1, f(t, x(t), x(θ(t))) = f(t, x(t))

and

F

(
t, x(t),

∫ t

0
u(t, s, x(a(s)))ds, x(b(t))

)
= F

(
t,

∫ t

0
u(t, s, x(a(s)))ds, x(b(t))

)
,

then equation 1.10 is in the following form

x(t) = f(t, x(t)) + F

(
t,

∫ t

0
u(t, s, x(a(s)))ds, x(b(t))

)
,

which was studied by K. Maleknejad et.al. [13].

• If we take
q(t) = r(t) = f(t, x(t), x(θ(t))) = g(t, x(t), x(ϑ(t))) = 0,

G

(
t, x(t),

∫ a

0
v(t, s, x(c(s)))ds, x(d(t))

)
= G

(
t,

∫ a

0
v(t, s, x(c(s)))ds, x(d(t))

)
and

F

(
t, x(t),

∫ t

0
u(t, s, x(a(s)))ds, x(b(t))

)
= F

(
t,

∫ t

0
u(t, s, x(a(s)))ds, x(b(t))

)
,

then equation 1.10 is in the following form

x(t) = F

(
t, x(t),

∫ t

0
u(t, s, x(a(s)))ds, x(b(t))

)
×G

(
t,

∫ a

0
v(t, s, x(c(s)))ds, x(d(t))

)
,

which was studied by J. Banas, B. Rzepka [5] and J. Bana’s, K. Sadarangani [7].
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• If we take
q(t) = r(t) = g(t, x(t), x(ϑ(t))) = 0,

G

(
t, x(t),

∫ a

0
v(t, s, x(c(s)))ds, x(d(t))

)
= 1, f(t, x(t), x(θ(t))) = f(t, x(t))

and

F

(
t, x(t),

∫ t

0
u(t, s, x(a(s)))ds, x(b(t))

)
=

∫ t

0
u(t, s, x(a(s)))ds,

then equation 1.10 is in the following form

x(t) = f(t, x(t)) +

∫ t

0
u(t, s, x(a(s)))ds,

which was studied by J. Banas, B. Rzepka [5].

• If we take
q(t) = r(t) = g(t, x(t), x(ϑ(t))) = 0,

G

(
t, x(t),

∫ a

0
v(t, s, x(c(s)))ds, x(d(t))

)
= 1, f(t, x(t), x(θ(t))) = 0

and

F

(
t, x(t),

∫ t

0
u(t, s, x(a(s)))ds, x(b(t))

)
= F (t, x(t))

∫ t

0
u(t, s, x(a(s)))ds,

then equation 1.10 is in the following form

x(t) = F (t, x(t))

∫ t

0
u(t, s, x(a(s)))ds,

which was studied by K. Maleknejad et.al. [14].

• If we take
q(t) = r(t) = g(t, x(t), x(ϑ(t))) = 0,

G

(
t, x(t),

∫ a

0
v(t, s, x(c(s)))ds, x(d(t))

)
= 1, f(t, x(t), x(θ(t))) = 0

and

F

(
t, x(t),

∫ t

0
u(t, s, x(a(s)))ds, x(b(t))

)
= a(t) +

∫ t

0
u(t, s, x(a(s)))ds,

in equation 1.10, then we get the following well known nonlinear Volterra integral equation

x(t) = a(t) +

∫ t

0
u(t, s, x(a(s)))ds.

• If we take
q(t) = r(t) = g(t, x(t), x(ϑ(t))) = 0,

F

(
t, x(t),

∫ t

0
u(t, s, x(a(s)))ds, x(b(t))

)
= 1, f(t, x(t), x(θ(t))) = 0

and

G

(
t, x(t),

∫ t

0
v(t, s, x(c(s)))ds, x(d(t))

)
= b(t) +

∫ a

0
u(t, s, x(s))ds,

in equation 1.10, then we obtain Urysohn integral equation

x(t) = b(t) +

∫ a

0
v(t, s, x(s))ds.
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• If we take
q(t) = r(t) = g(t, x(t), x(ϑ(t))) = 0,

G

(
t, x(t),

∫ a

0
v(t, s, x(c(s)))ds, x(d(t))

)
=

∫ a

0
v(t, s, x(c(s)))ds, f(t, x(t), x(θ(t))) = 0

and

F

(
t, x(t),

∫ t

0
u(t, s, x(a(s)))ds, x(b(t))

)
= a(t) +

∫ t

0
u(t, s, x(a(s)))ds,

in equation 1.10, then we get the following form examined by B.C. Dhage [9]

x(t) =

(
a(t) +

∫ t

0
u(t, s, x(a(s)))ds

)(∫ a

0
v(t, s, x(c(s)))ds

)
.

• Moreover, if
q(t) = r(t) = g(t, x(t), x(ϑ(t))) = 0,

F

(
t, x(t),

∫ t

0
u(t, s, x(a(s)))ds, x(b(t))

)
= 1, f(t, x(t), x(θ(t))) = 0

and

G

(
t, x(t),

∫ t

0
v(t, s, x(c(s)))ds, x(d(t))

)
= 1 +

∫ t

0
v(t, s, x(c(s)))ds.x(d(t)),

x(d(t)) = t, v(t, s, x(c(s))) =
t

t+ s
φ(s),

in equation 1.10, then we obtain Urysohn integral equation

x(t) = 1 + x(t)

∫ a

0

t

t+ s
φ(s)x(s)ds.

The above equation is the famous quadratic integral equation of Chandrasekhar type [8] which is applied
in the theories of radiative transfer, neutron transport and kinetic energy of gases.

5. Acknowledgement

The second author Dr Saurabh Manro is thankful to the National Board of Higher Mathematics for
Post-Doctorate Fellowship.

References
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