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Abstract

This article introduces the idea of complex valued bipolar metric space and derives some of its properties.
Moreover, for complex valued bipolar metric spaces, various fixed point theorems of contravariant maps
satisfying rational inequalities are proved. Additionally, the Kannan fixed point theorem and the Banach
contraction principle are both generalised.
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1. Introduction

In [1], A. Azam et al. proposed the idea of complex valued metric spaces, deduced a few properties, and
demonstrated fixed point outcomes for mappings fulfilling a rational inequality. See [2, 10, 11, 15] for a list
of articles on fixed point theory in complex valued metric spaces.

Assume that C is the set of all complex numbers and ¢1,co € C. A partial order = on C should be
defined as follows.
c1 3 co if and only if(or iff) Re(cq) < Re(c2), Im(c1) < Im(ez). It follows that ¢; 3 ¢s if one of the following
axioms is fulfilled:

(i) Re(c1) = Re(c2), Im(c1) < Im(cq),
(ii)) Re(cq) < Re(cg), Im(c1) = Im(ca),
(i) Re(cy) < Re(cg),Im(c1) < Im(ca),

(iv) Re(c1) = Re(ca), Im(c1) = Im(cz).
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In particular we will write ¢; ¥ ¢z if ¢1 # c2 and one of (i),(ii), and (iii) is fulfilled, and we will write c1 < c2
if only (iii) is fulfilled.
Note that

0j01§022> |Cl| < |02|
Cc1 ;562,62 <3 = €1 < C3.

Definition 1.1. [1] Let G be a non empty set. A complex valued metric is a mapping d : G x G — C
fulfilling the following conditions.

(I) dX,T)zZ0,VR Ted,
(II) dX,T)=0if X="TTin G,
) 1=

(R,
(III)  d(N, d(7ILN), VR, T e,
(IV) dX,7T) 2dR,p) +d(p, 1), VR, p,Teq.
The pair (G, d) is called a complex valued metric space.

A. Mutlu and U. Gurdal [8] established the idea of bipolar metric space, providing a novel definition
of distance measurement between the elements of two distinct sets. A generalization of metric space is
bipolar metric space. There are numerous articles that discuss fixed point theory in bipolar metric spaces;
for instance, see [4, 5, 7, 9, 12, 13, 14] and its references.

Definition 1.2. [8] Let G and H be two non empty sets. A bipolar metric is a mapping D : Gx H — [0, 00)
fulfilling the following conditions.

(i

) D(X,77) =0= N=", whenever (R,77) € G x H,
(i) N="T= D(R,T) =0, whenever (X,7) € G x H,
)

(i) DN,T)=D(,N), VR, Te GNH,
(iV) D(Nl,-lQ) < D(Nl,-ll) + D(NQ,-ll) + D(Nz,-lz), v Nl,Nz S G, and 11,12 € H.
The triple (G, H, D) is called a bipolar metric space.

In this paper, we present a new definition of complex valued bipolar metric space that generalises the
notion of complex valued metric space by extending the domain of complex valued metric to a Cartesian
product of two non-empty sets. Some complex valued bipolar metric space properties are derived. Moreover,
in complex valued bipolar metric space, we demonstrate several fixed point solutions for contravariant
mappings meeting various categories of rational inequalities. Additionally, we generalise the Kannan fixed
point result and the Banach contraction principle [3, 6].

2. Complex Valued Bipolar Metric Spaces

Definition 2.1. Let G and H be two non empty sets. A complex valued bipolar metric is a mapping
d: G x H — C fulfilling the following conditions.

(I) d(X,7) =z 0, whenever (X, 7)€ G x H,

(IT) d(X,7T) =0=NX="1, whenever (X, T) € G x H,
) N="T=4d(X,T) =0, whenever (X,7) € G x H,
)

d(R,T) = d(T,R), Y8, T € GN H,
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(V) d(Nl,-IQ) ;j d(Nl,-ll) + d(Ng,-Il) + d(NQ,-IQ), v Nl,Ng S G, and -Il,-lz € H.
The triple (G, H,d) is called a complex valued bipolar metric space(or, CVBMS).

Remark 2.2. Suppose (G,H,d) is a CVBMS. Then the space (G, H, d) is said to be disjoint if GN H = (). If
G N H # 0, the space (G, H,d) is referred to as a joint. The sets H and G are referred to, respectively, as
the right pole and left pole of (G, H,d).

Example 2.3. Let G be the collection of functions such that g : C — {c¢ : 1 < Re(c) < 3,Im(c) = 0},
H = C. Defined: G x H — C as d(g,c) = g(c), whenever (g,c¢) € G x H. Then (G, H,d) is a disjoint
CVBMS.

Remark 2.4. Let (G,d) be a complex valued metric space, then (G,G,d) is a CVBMS. Conversely, if
(G, H,d) is a CVBMS such that G = H, then (G,d) is a complex valued metric space.

Definition 2.5. Assume (G, H,d) is a CVBMS. Where the points of the sets H, G, and GN H are referred
to as the right, left, and central points. A right(or left, or central) sequence is one that only consists of
right(or left, or central) points in (G, H,d).

Definition 2.6. Suppose (G, H,d) is a CVBMS. A left sequence (R,,)5° ; converges to a right point T(or
(R,)22, — ) iff for each ¢ € C with ¢ > 0, there is an integer ng € N such that d(R,,,T) < ¢, Vn > ng. Also
a right sequence (71,,)0% ; converges to a left point X (or (7,)5°; — N) iff for each ¢ € C with ¢ - 0, there is
an integer ny € N such that d(X,7,) < ¢, ¥V n > nyg. When a CVBMS (G, H,d) is given with (p,)2°; — h
but no precise information on the sequence, this indicates that (p,)52 is either a right sequence and # is a
left point, or ()2, is a left sequence and £ is a right point.

Lemma 2.7. Let (G,H,d) be a CVBMS. Then a left sequence (X,,)0%, converges to a right point 71 iff
|[d(R,,, T)| = 0, and also a right sequence (T1,)°2, converges to a left point X iff |d(X, T,)| — 0.

Proof. Let (X,)22; be a left sequence, and (R,,)5°; — 7€ H. Let ¢ = % + z% for a certain real number
e > 0,. For each ¢ € C with ¢ > 0, there is an integer ng € N such that ¥V n > ng, d(X,,,7) < ¢

l[d(Ry,, D) < || =€, V n>ng.

Thus, it follows |d(X,, 7)| — 0 as n — oo. Conversely, let |d(X,,, T)] — 0 as n — oo. Then for ¢ € C with
c > 0, there is a real number § > 0 such that for z € C

lz| <d=2z=<c
For this ¢, there is an integer ng € N such that
|[d(R,,, )| < 9, Vn > ng.

It follows that d(X,,, 1) < ¢,Vn > ng. Therefore X,, — 7T € H.
Obviously, a right sequence (7,)22; converges to a left point N iff |d(X,T,)| — 0 and the proof is now
complete. O

Lemma 2.8. Suppose (G, H,d) is a CVBMS. When a central point serves as a sequence’s limit, the central
point acts as the sequence’s unique limit.

€

Proof. Suppose (R,,)5°; is a left sequence, ()5, - N e GNH, and (N,)>°; — 1€ H. Let ¢ = % —|—2‘E
for a certain real number € > 0. For each ¢ € C with ¢ > 0, there is an integer ng € N such that, V n > ng,
we have d(R,,R) < §, and d(R,,T) < §, and then

A, T) 3 A N) + AN, ®) +d(N, T) <0+ 5+ 2.

A8, T 3 1A R) + (R, R) + AR, T) < [0+ 5 + 5] = el =

We conclude that d(X,T) = 0, because € > 0 is arbitrary. Therefore & = 7. O
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Lemma 2.9. Suppose (G, H,d) is a CVBMS. If a left sequence (R,,)2 converges to 1 and a right sequence
(Tn)22, converges to X, then d(X,,, T,) — d(X, 1) as n — oo.

Proof. Let (R,)2°; — 7€ H, and (7,)52; - N e G. Let ¢ = 3 T i, for a certain real number € > 0.

For each ¢ € C with ¢ >~ 0, there is an integer ng € N such that, V n > ng, we have d(X,,7) < §, and
d(X,T,) < §, then

d(N, ) 2 AR, T,) +d(Ry,, ) +d(Ry,, )
implies

AR, ) = AR, o) 3 (R T) + AR, ) <5 45

|d(Ry,, Tpp) —d(R, D] 2[R, Ty,) +d(Ry,, T)| < |e] = €,Yn > nyg,
and therefore d(X,,, 7,) — d(X, ) as n — oc. O

Definition 2.10. Let (G4, H,) and (G, Hg) be two complex valued bipolar metric spaces, and g : G, U
H, — Gﬁ @] Hﬁ.

(i) If g(Go) € Gg and g(H,) € Hg, then g is called a covariant map from (G, Hy) to (Gg, Hg), and we
write g : (Go, Ha) = (Gg, Hp).

(i) If g(Go) € Hg and g(H,) € Gg, then g is called a contravariant map from (G, Ha) to (Gg, Hg), and
we write g : (Gqo, Hy) = (G, Hp).

Remark 2.11. Suppose d,, and dg are two complex valued bipolar metrics on (Go, Hy) and (Gg, Hg) re-
spectively. We can also use the symbols g : (G, Ha,d1) =2 (Gg, Hg,d2) and g : (G, Hy,d1) = (Gg, Hg, d2)
in the place of g : (Go, Ha) = (G, Hg) and g : (Go, Hy) &= (Gg, Hp).

Definition 2.12. Let (G, H,d) be a CVBMS.
(i) A sequence (X,,T,) on the set G x H is called a bisequence on (G, H,d).

(ii) If both (N,)5°; and (71,,)5°; converges, then the bisequence (X, T,) is called convergent. If both
(N,)9; and (T,)02, converges to a same point X € GN H, then the bisequence is called biconvergent.

(iii) If for each ¢ € C with ¢ > 0, there is an ng € N such that d(X,,, Tn+m) < ¢, ¥ n > ng, then a bisequence
(N, Tp) is called a Cauchy bisequence on (G, H,d).

Lemma 2.13. Let (G, H,d) be a CVBMS. Then (X, 1,,) is a Cauchy bisequence iff
ARy, Tpgm)] = 0 as n — oo.

Proof. Let (X, T,) is a Cauchy bisequence. Let ¢ = % + z% for a certain real number € > 0. For each

¢ € C with ¢ > 0, there is an integer ng € N such that, V n > ng, d(R,,, Tpim) < c.
‘d(Nna—[n—i—m)‘ < ’C’ =€, Vn > nyg.

Thus, it follows |d(Ry,, Tpim)| — 0 as n — oo. Conversely, let |d(R,,, Tp4m)] — 0 as n — oo. Then given
¢ € C with ¢ = 0, there is a real number § > 0 such that for z € C

2| <d=2=<c
For this 4, there is an integer ng € N such that
|d(Ryp,, Tntm)| <6, ¥ > ng.
It follows that d(X,,, Tntm) < ¢,Vn > ng. Therefore (R,,, T,) is a Cauchy bisequence. O

Proposition 2.14. FEvery biconvergent bisequence is a Cauchy bisequence in CVBMS (G, H,d).
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Proof. Suppose a bisequence (X,;, 7, is biconvergent to a point N € GNH. Let ¢ = % + i%, for a certain
real number € > 0. For each ¢ € C with ¢ > 0, there is an integer ng € N such that ¥V n > ng, d(X,,R) < g,
and ¥V n > ng, d(X, Tpqm) < 5. Then we have

d@%,jnﬂn)jcKNnJQ—+dOLN)+wﬂN,7n+m)—<§—+0%—%,Vn2ﬁn@

A0, Taen)| 3 1R, R) 4+ (R R) + AN, Tgm)] < |5 +0+ 5| = e = & ¥n = no.
So (N, Tp,) is a Cauchy bisequence. O
Proposition 2.15. FEvery convergent Cauchy bisequence is biconvergent in a CVBMS (G, H,d).

Proof. Let (R, T,,) be a Cauchy bisequence such that (X,,)22; convergent to Tin H and (7,)52; convergent
toNin G. Let ¢ = LQ + ZLQ for a certain real number € > 0. For each ¢ € C with ¢ > 0, there is an integer

no € N such that d(X,, ) < §, d(X, Tpym) < §, for all n > ng, and d(X,,, Tngm) < 5, ¥V 2 > ng. Then

C C
— + -

d(Na -i) rj d(N’ -Iner) + d(Nn, -Iner) + d(Nna -i) = 3 3

+§Nn2m-
MKN77)!5\d0%7n+m)+wamn,1n+m)+4aan,1)y<\§_%§

Therefore d(X, T) = 0 and so that 8 = 1. Then (X,,, T,,) is biconvergent. O

+ g\ = |c| = €,Yn > ny.

Definition 2.16. If every Cauchy bisequence is convergent, or equivalently, biconvergent, the CVBMS
(G, H,d) is said to be complete.

3. Main Results

Theorem 3.1. Let (G,H,d) be a complete CVBMS. If a contravariant map g : (G, H,d) = (G, H,d)

satisfies d(g(T),g(R)) S AR, T) + “d(N’fﬁz()g(gigj)’j), whenever (R, ) € G x H, for some \,u € (0,1) with

A+ < 1, then the function g: GUH — GUH has a UFP.

Proof. Let Xy € G, To = g(Ng) € H, and 8y = g(Tp). Suppose, 1, = g(X,,) and R, 11 = ¢g(T,), V n € N.
Then (X, T,) is a bisequence on (G, H,d). For every n € N, from
d®p, ) = d(g(Tn-1),9(Rs))
Md(Nnag(Nn))d(g(-infl),-Infl)
Ad(Ry,, T
( 1 1) * 1+ d(Nn, -Infl)
Md(Nna -ln)d(Nna -infl)
ANy, T
A ) T, T

)\d(Nn, -Infl) + Md(Nn, -in)

A

A

we conclude that

A
<
d(Nn7 1”) ~ 1 o Md(NN7 —[n—l)7

and

d(Nijn—l) = d(g(—[n—l)ag(Nn—l))
dNn—1,9(Rn-1))d(g(Tn-1); Tn-1)
~ 1%
~ )\d(Nn_h 1n—1) + 1+ d(Nn—h 1n—l)
)U/d(anla -lnfl)d(Nn, -Infl)
1+ d(Nn_l, —[n—l)
;j Ad(anla -Infl) + Md(Nna -infl)

= AM®y_1, Tpo1) +
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so that

A
N 1) S ——d(¥,,_ _
d( n71n 1) ~ 1_Md( n 17—[71 1)7

Therefore, by putting a = ﬁ, we have
d(Ry,, Tn) 2 a?™d(Ro, To)

and
ARy, Tm1) 3 @ Hd(Ro, o).

For every m,n € N,

ARy, Tn) ARy, Tn) + d(Ryp1, ) + d(Xpg1, T

(@2 + o )d(Ro, To) + d(Rps1, Tm)

(@ + T 4 4+ P Hd(Rg, To) + ARy, )
(@ 4+ o 1+ a®™)d(Rg, Ty), if m > n,

INESNRINRINEIN

ARy, Ton)| < (@2 4+ o2 4 4 a®™)d(Ro, To)|, if m > n,
and similarly, if m < n, then

ARy, T) 3 (@2 o221 o d(Rg, T),

(R, )| < (@27 + 0?42 4 @) ]d(Rg, To).

By a € (0,1), |d(R,, T,n)] — 0, as n,m — oo, we conclude that (X, 7,) is a Cauchy bisequence. Also,
(N,,, T,) converges, and biconverges to a point p € G N H, because (G, H,d) is complete. Hence, g(X,,) =
Tn — p € GNH as n — oo implies d(g(p), 9(R,)) — d(g(p), p) as n — oo, by using Lemma 2.9. Also by
taking the limit from

pd(Xn, T0)d(g(p), 0)
14+dXNy,, p)

d(g(), 9(Rp)) T Ad(Ry, 0) +

pld(Rn, Tn)d(g(p), 9)
[T+ d(Ry, )]

as n — oo, we get d(g(p), p) = 0. Hence g(p) = p. Therefore p is a fixed point of g.
If A is another fixed point of g, then g(h) = h, h € G N H, and hence,

pd(p, g(p))d(g(h), h)
1+ d(p,h)

Therefore d(p, h) = 0 so that p = h. So g has a UFP. O

ld(g(9), 9(Rn))| < Ald(Ry,, )] +

d(p,h) = d(g(p), 9(h)) Z Ad(p,h) +

< Ad(p, h)

A Corollary 5 of [1] is generalised by the previous Theorem. Also if ;1 = 0 then the above Theorem
generalizes a Banach contraction principle (see [6]).

Example 3.2. Let G = {0,1,2} and H = {0, 3}. Let d(X,T) = |[X — 7| + iR — 7|, where (X,T) € G x H.
Then (G, H,d) is a complete CVBMS. Define a contravariant map ¢ : (G, H,d) = (G, H,d) by g(0) = 0,
g(3) =0, and g(2) = 3. Then, g satisfies the inequality d(g(7),g(R)) 3 Ad(R,T) + ud®,9()) (_glg‘l)fi) for

d
T+d(R
A= % and p = %. By Theorem 3.1, g has a UFP zero in GN H.
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Theorem 3.3. Let (G,H,d) be a complete CVBMS. If a contravariant map g : (G,H,d) = (G, H,d)

satisfies d(g(7T),g(N)) 3 A[d(R, g(R)) +d(g(TT), )] + “d(N’ffcg()g(gi)m)’-l) , whenever (R,7) € G x H, for some

A i€ (0,1) with 2\ + p < 1, then the function g : GUH — G U H has a UFP.

Proof. Let Xy € G, To = g(Ng) € H, and 8y = g(Tp). Suppose, 1, = g(X,,) and R, 11 = ¢g(T,), V n € N.
Then (X, T,) is a bisequence on (G, H,d). For every n € N, from

d(Nm 1n) = d(g(—[n—l)a g(Nn))
A, g0%) + (g(Ta2), )]+ ARSI k) )
Md(Nna —[n)d(Nna —[n—l)
1+ d(Nn, 1n_1)

A

ARy, T) +d(Ryy, Tpm1)] +

A

we conclude that
A

d(Nna -In) j md(Nna -infl),
and
d(Nna-Infl) = d(g(-infl)ag(anl))
< IUd(anlag(anl))d(g(-lnfl), -Infl)
~ A[d(Nn*I,g(anl)) + d(g(-lnfl), -Infl)] + T d(anl, -infl)
_ :ud(anla -lnfl)d(Nn, -Infl)
= )\[d(anl, -Infl) + d(Nn, -Infl)] + 1T d(anl, -Infl)
;j A[d(anly -Infl) + d(Nn, -Infl)] + Md(Nna -lnfl)
so that
A
AR, Tn1) 2 md(?‘zn—l,jml),

Therefore, by putting o = ﬁ, we have

ARy, Tn) 3 @®"d(Ro, To)
and

ARy, Tno1) 2 @ Hd(Ro, To).
For every m,n € N,

ARy, ) ARy, Tn) + d(Rps1, Tn) +dRpp1, Tin)

(@™ + a® ) d(Rg, To) + dXpg1, Thn)

(@ 4 o 1 4 ™ d(Rg, To) + ARy )
(@™ +a* L+ aP™)d(Rg, To), if m > n,

ISR SRS NR IR TN

(0, Ton)| < (02" + 0™ 4. 4 a2™)d(Ro, o), ifm > m,
and similarly, if m < n, then

ARy, Tn) 3 (@2 4 @22 a2 d(Re, To),

(R, )| < (@27 + 0?42 4 @) ]d(Rg, To).
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By a € (0,1), |d(R,, T;n)] — 0, as n,m — oo, we conclude that (X, 7,) is a Cauchy bisequence. Also,
(N,,, T,) converges, and biconverges to a point p € G N H, because (G, H,d) is complete. Hence, g(X,,) =
Tn = € GNH as n — oo implies d(g(p), 9(R,)) — d(g(p), p) as n — oo, by using Lemma 2.9. Also by
taking the limit from

pd(XNn, Tn)d(g(p), 0)
1+dX,, p)

d(g(p); 9(Rn)) T Ald(Rp, Tn) + d(g(p), )] +

pld(Rn, Tn)d(g(p), p)|
1+ d(Rn, p)|

as n — oo, we get d(g(p), p) = 0. Hence g(p) = p. Therefore p is a fixed point of g.
If A is another fixed point of g, then g(h) = h, h € G N H, and hence,

pd(p, g(p))d(g(h), h)
1+ d(p,h)

Therefore d(p, h) = 0 so that p = h. So g has a UFP. O

|d(g(9), g(Rn))| < Alld(Ron, ) + d(g(9), 0)I] +

d(p,h) = d(g(p),9(h)) T Nd(p, g(p)) + d(g(h), h)] +

If i = 0 then the above Theorem generalized the Kannan fixed point theorem [3].

Example 3.4. Let G and H be the collections of all singleton and compact subsets of R, respectively. Let

d(X, B) = [N —inf(B)| +i|X — sup(B)|, where (X, B) € G x H. Then (G, H,d) is a complete CVBMS. Define

a contravariant map ¢ : (G, H,d) = (G, H,d) by g(B) = w, for all B € GUH. Then, g satisfies
. . , 0,7

the inequality d(g(T), g(R)) = A[d(R, g(R)) +d(g(T), T)] + L& fiNd)()g’(-glg LD for A = +and p = 0. Thus g has

a UFP {1} € GN H, because of Theorem 3.3.

Theorem 3.5. Let (G,H,d) be a complete CVBMS. If a contravariant map g : (G,H,d) = (G, H,d)

satisfies d(g(T). 9(%)) 3 A, T) +d(R g () +d(g(), )] + LAREBUCUI, whenever (%,7) € G x I,

for some A\, € (0,1) with 3\ + p < 1, then the function g : GUH — GUH has a UFP.

Proof. Let Xy € G, To = g(Xg) € H, and 8y = g(Tp). Suppose, 1, = g(X,,) and R, 11 = ¢(T,), V n € N.
Then (X, T,) is a bisequence on (G, H,d). For every n € N, from

ARy, )
d(g(Tn-1),9(Rp))

Md(Nna —[n)d(Nna —[n—l)
A (S T e o Y

3 ARG, Tae1) + AR, o) + AR, 1)) 4+ pd (R, )

A

we conclude that

and

d(Nna -Infl) = d(f(-infl)’ f(anl))

r_\<.1 )‘[d(anly -Infl) + d(anlyg(anl)) + d(g(-lnfl), -Infl)]
pd®n -1, g(Rn—1))d(g(Tn-1), Tn-1)
1 + d(anla Q(anl)) + d(g(-infl), -Infl)

+
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= )‘[d(Nn*I, -Infl) + d(anla -Infl) + d(Nn, -Infl)]
,U/d(anly -Infl)d(Nn, -Infl)
1 + d(anla g(anl)) + d(g(-lnfl)a -infl)

:5 )‘[d(Nn—la —[n—l) + d(Nn—la —[n—l) + d(Nna —[n—l)] + Md(Nn, —[n—l)

_l’_

so that

2
d(Nna-Infl) 3 A

2 T,
Nl_)\_u( 1, Tn-1)

Therefore, by putting o = %, we have

d(Rn, Tn) 3 @®d(Ro, To)
and

d(Ry, Tno1) 3 & 1d(Ro, To).
For every m,n € N,

ARy, Tn)

A

ARy, Tn) + dRpi1, Tn) + d(Rpy1, Tn)
(@™ 4+ ® ™) d(Rg, To) + d(Npp1, Tm)

(@ + T 4 4+ P Hd(Rg, To) + ARy, )
(@™ +a® 4+ a?™)d(Rg, o), if m > n,

ISR SNRINR I

ld(Rp, T)| < (@2 4+ 2T 4 2™)|d(Ro, To)|, if m > n,
and similarly, if m < n, then

AR, ) = (@2 4+ 022 4 4 a2 a(Rg, To),

AR, )| < (@27 + 0?42 4 @) ]d(Rg, To).

By a € (0,1), [d(R,,, T,)| — 0, as n,m — 00, we get to the conclusion that (X, 7,,) is a Cauchy bisequence.
Also, (R, T,,) converges, and biconverges to a point p € G N H, because (G, H,d) is complete. Hence,
g(N,) =", = p € GN H as n — oo implies d(g(p), g(Ry,)) — d(g(p), p) as n — oo, because of Lemma 2.9.
Also by taking the limit from

pd(XNp, Tn)d(g(p), 0)
1+ d(Rp, Tp) + d(g(9), )

pld(Rn, Tn)d(g(p), 9)|

1+ d(Rp, TTn) + d(g(p), o)

as n — oo, we get d(g(p), p) = 0. Therefore g(p) = p, and p is a fixed point of g.
If 7 is another fixed point of g, then g(h) = h, h € GN H, and hence,

d(9(p), 9(Rp)) S AdRy, p) +d(Rn, 1) + d(g(), 0)] +

|d(g(9), g(Rn))| < Alld(Ron, 9) + d(Rn, TTn) + d(g(0), )] +

d(p, ) = d(9(p), 9(h)) 3 Ald(p, i) + d(p, 9(p)) + d(g(R), )] + +uj(<g: zég))iﬁgé(ﬁg)é;) h)

Therefore d(p, h) = 0 so that p = h. So g has a UFP. O

If = 0 in the previous Theorem, then we get next Corollary.

Corollary 3.6. Let (G,H,d) be a complete CVBMS. If a contravariant map g : (G,H,d) = (G, H,d)
satisfies d(g(7T),g(R)) 3 AN[d(R,T) +d(X, g(R)) + d(g(7), )], whenever (R,7T) € G x H, for some A € (0,1)
with 3A < 1, then the function g: GUH — GU H has a UFP.
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4. Conclusions

It is possible to think of all fixed point theorems in complex valued bipolar metric spaces as generalisations
of those in complex valued metric spaces. A generalisation of fixed point theorems in metric spaces can be
made of all fixed point theorems in complex valued metric spaces. Therefore, it is crucial to study fixed
point outcomes in complex valued bipolar metric spaces.
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