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Abstract

A new countable family of generalized nonexpansive mappings is introduced and a new monotone hybrid
algorithm is presented in the framework of Banach spaces. Some new results are obtained for the class
of generalized nonexpansive mappings and countable family of generalized nonexpansive mappings. The
study exhibits the procedure for obtaining a common element of the zero point set of a maximal monotone
operator and the newly introduced countable family of generalized nonexpansive mappings.
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1. Introduction

Let E be a real Banach space and let C be a nonempty closed convex subset of E. The dual of E will
be denoted by E∗. Let N and R, respectively be the sets of all positive integers and real numbers. A self
mapping T : C → C is said to be nonexpansive if

‖Tu− Tv‖ ≤ ‖u− v‖, for all u, v ∈ C,

and a mapping T : C → E is said to be generalized nonexpansive provided F (T ) 6= ∅ and

φ(p, Tu) ≤ φ(p, u) for all u ∈ C and p ∈ F (T ),
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where F (T ) := {u : Tu = u} , is the set of fixed points of T. An eminent class of the class of nonlinear
operators is the class of nonexpansive mappings. The iterative processes on the class of nonexpansive
mappings have been successfully applied in several areas such as signal processing and image restoration
(see, e.g., [5, 4]). Let T : C → C be a nonexpansive self-mapping in a Hilbert space H. In 2008, Qin and Su
[6] presented a monotone hybrid method, defined as
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u1 = u ∈ C,C0 = Q0 = C,

xn = βnun + (1− βn)Tun,

Cn = {x ∈ Cn−1 ∩Qn−1 : ‖x− xn‖ ≤ ‖x− un‖}

Qn = {x ∈ Cn−1 ∩Qn−1 : 〈un − x, u− un〉 ≥ 0}

un+1 = PCn∩Qnu, n ∈ N,

where PC : H → C be a metric projection from H onto C and showed that the sequence {un} converges
strongly under suitable conditions. Monotone hybrid iterative method has also been considered in a uni-
formly smooth and uniformly convex Banach space E for a family of generalized nonexpansive mappings,
say {Sn} which satisfies NST-condition. Klin-eam et al. [11] defined {Sn} from a generalized nonexpansive
mapping T : C → E by

Snu = αnu+ (1− αn)Tu

and also from the generalized nonexpansive mappings T and G : C → E by

Snu = αnTu+ (1− αn)Gu,

for all u ∈ C and {αn} ⊂ [0, 1]. Then the iterative sequence {un} is defined by
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u1 = u ∈ C,C0 = Q0 = C,

xn = βnun + (1− βn)Snun,

Cn = {x ∈ Cn−1 ∩Qn−1 : φ(x, xn) ≤ φ(x, un)}

Qn = {x ∈ Cn−1 ∩Qn−1 : 〈un − x, Ju− Jun〉 ≥ 0}

un+1 = RCn∩Qnu,

where J denotes the duality mapping on E, RCn∩Qn is the sunny nonexpansive retraction from C onto
Cn ∩Qn. Let N ∈ N, Alizadeh and Moradlou [2], considered the iterative sequence which is given by


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











u1 = u ∈ C, C0 = Q0 = C,

xn = λnun + (1− λn)Snun,

yn = βnxn + (1− βn)Snun,

Cn = {x ∈ Cn−1 ∩Qn−1 : ϕ(x, yn) ≤ ϕ(x, un)}

Qn = {x ∈ Kn−1 ∩Qn−1 : 〈un − x, Ju− Jun〉 ≥ 0}

un+1 = RCn∩Qnu,

and defined {Sn} by

Snu =
N
∑

k=1

αknGku ∀ u ∈ C,

where G1, G2, G3, ..., GN are generalized nonexpansive mappings of C into E such that

∞
⋂

n=1

F (Gn) 6= ∅

and the real sequences {λn} , {βn} and {αkn}
N
k=1 in [0, 1] satisfying lim inf

n→∞
(1− λn) > 0, lim

n→∞
βn = 1,
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N
∑

k=1

αkn = 1 for all n ∈ N and lim inf
n→∞

αinαjn > 0 for all i, j ∈ {1, 2, ..., N} with i < j. Let A ⊂ E × E∗ be

a maximal monotone operator. If 0 ∈ Au, then u is called a zero of A. An absolutely stunning problems
in mathematical analysis that is associated with convex analysis and mathematical optimization is finding
a zero of a maximal monotone operator (See, e.g., [9, 10, 12, 19]). Such problems have connection with
variational inequality problems and their solutions have applications in several fields, such as economics,
science and engineering. It is well known that the variational inequalities are equivalent to the fixed point
problem (See, e.g., [16, 3, 17, 20]).

In this paper, a new countable family of generalized nonexpansive mappings which satisfies the NST-
condition is introduced and a new monotone hybrid algorithm is presented. This study displays how to
find a common element of the zero point set of a maximal monotone operator and the newly introduced
countable family of generalized nonexpansive mappings which satisfies NST-condition. The conditions are
established for a strong convergence of the proposed algorithm and the results are true in a general Banach
space.

2. Preliminaries

Let E and E∗, respectively denote a real Banach space and its dual space. A unit sphere will be denoted
by S(E) := {u ∈ E : ‖u‖ = 1} . Given taht the limit

lim
t→0

‖u+ tv‖ − ‖u‖

t
(2.1)

exists for all u, v ∈ S(E) with ‖u‖ = ‖v‖ = 1, the norm ‖.‖ of E is said to be Gâteaux differentiable and E

is said to be smooth in such a case. Given that E is smooth and the limit (2.1) is attained uniformly for
each u, v ∈ S(E), then E is said to be uniformly smooth. The modulus of convexity of a Banach space E,
δE : (0, 2] → [0, 1] is defined by

δE(ǫ) = inf

{

1−
‖u+ v‖

2
: ‖u‖ = ‖v‖ = 1, ‖u − v‖ > ǫ

}

.

Given that δE(ǫ) > 0 for every ǫ ∈ (0, 2], then E is uniformly convex. A Banach space E is said to be
strictly convex if ‖u + v‖ < 2 for all u, v ∈ E whenever ‖u‖ = ‖v‖ = 1 and u 6= v. It is well known that a
space E is uniformly smooth if and only if E∗ is uniformly convex. Let J : E → 2E

∗

be defined by

Ju = {u∗ ∈ E∗ : 〈u, u∗〉 = ‖u‖‖u∗‖, ‖u∗‖ = ‖u‖} ∀ u ∈ E.

Then J is called a normalized duality mapping it is known to be uniformly norm-to-norm continuous on
bounded sets of E if E is uniformly smooth. Let E be a given Banach space and let A ⊂ E × E∗ be a
multi-valued operator. Given that for all (u, u∗), (v, v∗) ∈ A,

〈u− v, u∗ − v∗〉 ≥ 0,

then A is said to be monotone and it is said to be maximal monotone if it is monotone and its graph is not
properly contained in the graph of any other monotone mapping. For a maximal monotone operator A, the
set A−1(0) := {u ∈ E : Au = 0} is closed and convex. According to a result of Rockafellar [18], in a given
strictly convex, smooth and reflexive Banach space E, A is said to be maximum monotone if it is monotone
and the range of (J + rA) is all of E∗ for all r > 0.

Definition 2.1. Let E be a given smooth Banach space and define the function ϕ : E × E → R by

φ(u, v) = ‖u‖2 − 2 〈u, Jv〉+ ‖v‖2,

for all u, v ∈ E. In a framework of Hilbert space, it is expressed as φ(u, v) = ‖u− v‖2 ≥ 0. For all u, v, w ∈ E,



M. O. Aibinu, S. Moyo, Commun. Nonlinear Anal. 2 (2023), 1–15 4

(i) (‖u‖ − ‖v‖)2 ≤ φ(u, v) ≤ (‖u‖ + ‖v‖)2 ,

(ii) φ(u, v) = φ(u,w) + φ(w, v) + 2 〈u− w, Jw − Jv〉 ,

(iii) φ(u, v) = 〈u, Ju− Jv〉+ 〈u− v, Jv〉 ≤ ‖u‖‖Ju − Jv‖+ ‖u− v‖‖v‖.

Definition 2.2. Resolvent: Let E be a given Banach space, which is strictly convex, smooth, and reflexive
and let A ⊂ E × E∗ a maximal monotone mapping. Given r > 0 and u ∈ E, then there exists a unique
ur ∈ D(A) such that Ju ∈ Jur + rAur. Therefore, a single-valued mapping Jr : E → D(A) can be defined
as

Jru = {w ∈ D(A) : Ju ∈ Jw + rAw} ,

which is called the resolvent of A. Jru is known to consist of one point and for all r > 0, A−1(0) = F (Jr),
where F (Jr) is the set of fixed points of Jr. Also, for all r > 0 and u ∈ E, the Yosida approximation
Ar : C → E∗ is defined by

Aru =
1

r
(J − JJr)u.

For all r > 0 and u ∈ E, the following hold (See, for example [14, 7])

(i) φ(p, Jru) + φ(Jru, u) ≤ φ(p, u) for all p ∈ A−1(0).

(ii) (Jru,Aru) ∈ A.

Definition 2.3. Metric projection: Let H be a Hilbert space and C be a nonempty closed convex subset
of H. A mapping PC : H → C of H onto C which satisfies

‖u− PCu‖ = min
v∈C

‖u− v‖,

is called the metric projection. This is known to be a singleton. An important property of the metric
projection states that for u ∈ H and u0 ∈ C, u0 = PCu if and only if

〈u− u0, u0 − v〉 ≥ 0 ∀ v ∈ C.

Definition 2.4. Retraction: Let C be nonempty subset of a Banach space E. A mapping R : E → C is
called sunny if

R(Ru+ α(u −Ru)) = Ru,

for all u ∈ E and all α ≥ 0. If Ru = u for all u ∈ C, it is also called a retraction. A retraction which is also
sunny and nonexpansive is called a sunny nonexpansive retraction. If E is a smooth Banach space, the sunny
nonexpansive retraction of E onto C is denoted by RC . C is said to be a sunny generalized nonexpansive
retract of E provided that there exists a sunny generalized nonexpansive retraction R from E onto C.

Some important results on sunny generalized nonexpansive retraction which will be needed are stated
here. For their proof, see [7, 13].

Lemma 2.5. Let C be a nonempty closed subset of a smooth and strictly convex Banach space E. Let RC

be a retraction of E onto C. Then RC is sunny and generalized nonexpansive if and only if

〈u−RCu, JRCu− Jv〉 ≥ 0

for each u ∈ E and v ∈ C.

Lemma 2.6. Let C be a nonempty closed subset of a smooth and strictly convex Banach space E such that
there exists a sunny generalized nonexpansive retraction R from E onto C and let (u,w) ∈ E×C. Then the
following hold:
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(i) w = Ru if and only if 〈u− w, Jv − Jw〉 ≤ 0 for all v ∈ C;

(ii) φ(u,RCv) + φ(RCv, v) ≤ φ(u, v).

Lemma 2.7. Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty closed
subset of E. Then the following are equivalent:

(i) C is a sunny generalized nonexpansive retract of E;

(ii) C is a generalized nonexpansive retract of E;

(iii) JC is closed and convex.

Definition 2.8. NST-Condition: Let C be a closed subset of a real Banach space E. Suppose that

{Sn} and Γ are two families of the generalized nonexpansive mappings of C into E such that
∞
⋂

n=1

F (Sn) =

F (Γ) 6= ∅, where F (Γ) is the set of all common fixed points of Γ. The sequence {Sn} is said to satisfy the
NST-condition with Γ if

lim
n→∞

‖un − Snun‖ = lim
n→∞

‖un − Sun‖

for all S ∈ Γ and all bounded sequence {un} in C [15]. If Γ possesses one element, i.e., Γ = {S} , then {Sn}
satisfies the NST-condition with {S} . If we put Sn = S for all n ∈ N, then {Sn} satisfies the NST-condition
with {S} .

The following are well known results and will be applied to establish the main results.

Lemma 2.9. Let E be a uniformly convex and smooth Banach space and let {un} and {vn} be two sequences
in E such that either {un} or {vn} is bounded. If lim

n→∞
ϕ(un, vn) = 0, then lim

n→∞
‖un − vn‖ = 0 (See, for

example [9]).

Lemma 2.10. Let E be a uniformly convex and smooth Banach space and let d > 0. Then there exists a
strictly increasing, continuous and convex function g : [0,∞) → [0,∞) such that g(0) = 0 and

g (‖u− v‖) ≤ φ(u, v)

for all u, v ∈ Bd(0), where Bd(0) = {w ∈ E : ‖w‖ ≤ d} (See, for example [9]).

Lemma 2.11. Let E be a uniformly convex Banach space and let d > 0. Then there exists a strictly
increasing, continuous and convex function g : [0,∞) → [0,∞) such that g(0) = 0 and

‖αu+ (1− α)v‖2 ≤ α‖u‖2 + (1− α)‖v‖2 − α(1− α)g (‖u− v‖)

for all u, v ∈ Bd(0) and α ∈ [0, 1], where Bd(0) = {w ∈ E : ‖w‖ ≤ d} (See, for example [21]).

Lemma 2.12. Let E be a smooth and strictly convex Banach space, let p ∈ E and let {αi}
m
i ⊂ (0, 1) with

∑m
i αi = 1. If {αi}

m
i is a finite sequence in E such that

φ

(

p, J−1

(

m
∑

i

αiJwi

))

= φ (p,wi) ,

then w1 = w2 = ... = wm(See, for example [8]).
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3. Main Results

Lemma 3.1. Let E be a strictly convex, smooth, and reflexive Banach space and let A ⊂ E × E∗ be a
maximal monotone mapping with A−1(0) 6= ∅. For each λ > 0, let Jλ : E → E be the resolvent of A

associated with λ. Then Jλ is a generalized nonexpansive mapping.

Proof. The proof is given in [1]. However, to make this manuscript a complete paper, the sketch of the proof
is given here.
Let u ∈ E, v ∈ F (Jλ) and λ > 0. Recall that A−1(0) = F (Jλ) since A is a maximal monotone operator.
Wherefore by Definition 2.2 (i),

φ(v, Jλu) + φ(Jλu, u) ≤ φ(v, u) for all v ∈ A−1(0).

It is known by Definition 2.1 (i) that φ(Jλu, u) ≥ 0. Hence,

φ(v, Jλu) ≤ φ(v, u).

Assumption 3.2. Let N ∈ N, the real sequences {αkn}
N
k=1 , {βn} and {γn} in [0, 1] are assumed to satisfy

the following conditions:

(i)
N
∑

k=1

αkn = 1 for all n ∈ N;

(ii) lim inf
n→∞

αinαjn > 0 for all i, j ∈ {1, 2, ..., N} with i < j;

(iii) lim inf
n→∞

(1− βn) > 0;

(iv) lim
n→∞

γ = 1.

Lemma 3.3. Let E be a uniformly convex and uniformly smooth Banach space E, C be a nonempty closed
convex subset of E and RC : E → C be a sunny and generalized nonexpansive retraction from E onto C.

Let G1, G2, ..., GN are be generalized nonexpansive mappings of C into E such that

N
⋂

k=1

F (Gk) 6= ∅. Suppose

that for each n ∈ N, the mapping Sn : C → E is defined by

Snu = J−1

(

N
∑

k=1

αknJGku

)

∀ u ∈ C, (3.1)

where {αkn}
N
k=1 is a sequence in [0, 1] satisfying the Assumption 3.2 (i) and (ii). Then, the countable family

of generalized nonexpansive mappings {Sn} satisfies NST-condition with Γ = {G1, G2, ..., GN } .

Proof. Step 1: Firstly, we show that for each n ∈ N, Sn is a generalized nonexpansive mapping and that
∞
⋂

n=1

F (Sn) = F (Γ). Notice that

F (Γ) =

N
⋂

k=1

F (Gk) ⊂
∞
⋂

n=1

F (Sn). (3.2)
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Therefore, for p ∈ F (Γ) and x ∈ C,

φ (p, Snx) = φ

(

p, J−1

(

N
∑

k=1

αknJGkx

))

= ‖p‖2 − 2

〈

p,

N
∑

k=1

αknJGkx

〉

+

∥

∥

∥

∥

∥

N
∑

k=1

αknGkx

∥

∥

∥

∥

∥

2

≤ ‖p‖2 − 2

N
∑

k=1

αkn 〈p, JGkx〉+
N
∑

k=1

αkn ‖Gkx‖
2

=
N
∑

k=1

αknφ (p,Gkx)

≤
N
∑

k=1

αknφ (p, x)

= φ (p, x) .

Thus, Sn is a generalized nonexpansive mapping. Moreover, for ζ ∈
∞
⋂

n=1

F (Sn),

φ(p, ζ) = φ (p, Snζ)

= φ

(

p, J−1

(

N
∑

k=1

αknJGkζ

))

= ‖p‖2 − 2

〈

p,

N
∑

k=1

αknJGkζ

〉

+

∥

∥

∥

∥

∥

N
∑

k=1

αknGkζ

∥

∥

∥

∥

∥

2

≤ ‖p‖2 − 2

N
∑

k=1

αkn 〈p, JGkζ〉+
N
∑

k=1

αkn‖Gkζ‖
2

=

N
∑

k=1

αknφ (p,Gkζ)

≤
N
∑

k=1

αknφ (p, ζ)

= φ (p, ζ) ,

which indicates that

φ

(

p, J−1

(

N
∑

k=1

αknJGkζ

))

=
N
∑

k=1

αknφ (p,Gkζ) = φ (p, ζ) .

By applying Lemma 2.12, one gets that ζ = Snζ = G1ζ = G2ζ = ... = GNζ. Thus, F (Sn) ⊂ F (Γ) for all

n ∈ N and hence,

∞
⋂

n=1

F (Sn) = F (Γ).

Step 2: To prove that {Sn} satisfies NST-condition with G1, G2, ..., GN , an arbitrary bounded sequence
{ωn} in C is assumed given such that lim

n→∞
‖ωn − Snωn‖ = 0. Consequently, the norm-to-norm uniform

continuouity of the duality mapping J on bounded sets gives that

lim
n→∞

‖Jωn − JSnωn‖ = 0. (3.3)
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It is given that {ωn} is bounded, therefore {Gkωn} are bounded for k = 1, 2, ..., N. Let
r = max {supn ‖ωn‖, supn ‖Gkωn‖} . Thus, there exists r > 0 withBr(0) = {z ∈ E : ‖z‖ ≤ r} and {ωn} , {Gkωn} ⊂
Br(0). Then by Lemma 2.11, there exists a function g : [0,∞) → [0,∞) which is strictly increasing, contin-

uous and convex with g(0) = 0 such that for p ∈
∞
⋂

n=1

F (Sn),

φ (p, Snωn) = φ

(

p, J−1

(

N
∑

k=1

αknJGkωn

))

= ‖p‖2 − 2

〈

p,

N
∑

k=1

αknJGkωn

〉

+ ‖
N
∑

k=1

αknGkωn‖
2

≤ ‖p‖2 − 2
N
∑

k=1

αkn 〈p, JGkωn〉+
N
∑

k=1

αkn‖Gkωn‖
2 − αinαjng (‖Giωn −Gjωn‖)

=
N
∑

k=1

αknφ (p,Gkωn)− αinαjng (‖Giωn −Gjωn‖)

≤
N
∑

k=1

αknφ (p, ωn)− αinαjng (‖Giωn −Gjωn‖)

= φ (p, ωn)− αinαjng (‖Giωn −Gjωn‖) .

Consequently,

αinαjng (‖Giωn −Gjωn‖) ≤ φ (p, ωn)− φ (p, Snωn) . (3.4)

Let {‖Giωnk
−Gjωnk

‖} be an arbitrary subsequence of {‖Giωn −Gjωn‖} . The boundedness of {ωnk
} guar-

antees the existence of a subsequence
{

ωn′

m

}

of {ωnk
} such that

lim
m→∞

φ
(

p, ωn′

m

)

= lim sup
k→∞

φ (p, ωnk
) = 0.

Applying Definition 2.1 ((ii) and (iii)) result in

φ
(

p, ωn′

m

)

= φ
(

p, Sn′

m
ωn′

m

)

+ φ
(

Sn′

m
ωn′

m
, ωn′

m

)

+ 2
〈

p− Sn′

m
ωn′

m
, JSn′

m
ωn′

m
− Jωn′

m

〉

≤ φ
(

p, Sn′

m
ωn′

m

)

+ ‖Sn′

m
ωn′

m
‖‖JSn′

m
ωn′

m
− Jωn′

m
‖

+ ‖Sn′

m
ωn′

m
− ωn′

m
‖‖ωn′

m
‖+ 2‖p − Sn′

m
ωn′

m
‖‖JSn′

m
ωn′

m
− Jωn′

m
‖.

(3.5)

By taking the limit inferior on both sides of (3.5) while taking note of (3.17) and (3.3) results in

c = lim inf
m→∞

φ
(

p, ωn′

m

)

= lim inf
m→∞

φ
(

p, Sn′

m
ωn′

m

)

.

Alternatively, ϕ (p, Snωn) ≤ ϕ (p, ωn) leads to

lim sup
m→∞

φ
(

p, Sn′

m
ωn′

m

)

= lim sup
m→∞

φ
(

p, ωn′

m

)

= c,

wherefore

lim
m→∞

φ
(

p, ωn′

m

)

= lim
m→∞

φ
(

p, Sn′

m
ωn′

m

)

= c.

Thus, it can be deduced from (3.4) that

lim
m→∞

g
(

‖G1ωn′

m
−G2ωn′

m
‖
)

= 0,



M. O. Aibinu, S. Moyo, Commun. Nonlinear Anal. 2 (2023), 1–15 9

since lim inf
n→∞

α1mα2m > 0. Therefore, by the properties of the function g, lim
m→∞

‖G1ωn′

m
−G2ωn′

m
‖ = 0, and

thus

lim
n→∞

‖G1ωn −G2ωn‖ = 0.

Using similar analysis, it can be shown that lim
n→∞

‖G1ωn−Gjωn‖ = 0, for j = 3, 4, 5, ...., N. Considering the

fact that

‖ωn −G1ωn‖ = ‖ωn − Snωn‖+ ‖Snωn −G1ωn‖

≤ ‖ωn − Snωn‖+
N
∑

k=2

αkn‖G1ωn −Gkωn‖,

which results in lim
n→∞

‖ωn−G1ωn‖ = 0. Similar analysis yields that lim
n→∞

‖ωn−Gjωn‖ = 0, for j = 2, 3, 4, ..., N.

Therefore,

lim
n→∞

‖ωn − Sωn‖ = 0 ∀ S ∈ Γ. (3.6)

Theorem 3.4. Let E be a uniformly convex and uniformly smooth Banach space E, C be a nonempty
closed convex subset of E and RC : E → C be a sunny and generalized nonexpansive retraction from
E onto C. The resolvent associated with a maximal monotone operator A ⊂ E × E∗ will be denoted by
Jλ : E → E for all λ > 0 and G1, G2, ..., GN are closed generalized nonexpansive mappings of C into E

with Γ = {G1, G2, ..., GN } such that F (Γ) ∩ A−1(0) 6= ∅. Suppose that for each n ∈ N, the sequence {un} is
defined by











































u1 = u ∈ C, C0 = Q0 = C,

xn = J−1 (βnJun + (1− βn)JSnRC (Jλn
un)) ,

yn = J−1 (γnJxn + (1− γn)JSnRC (Jλn
un)) ,

Cn = {x ∈ Cn−1 ∩Qn−1 : φ(x, yn) ≤ φ(x, un)} ,

Qn = {x ∈ Cn−1 ∩Qn−1 : 〈un − x, Ju− Jun〉 ≥ 0} ,

un+1 = RCn∩Qnu,

where J is the duality mapping on E, real sequences {βn} and {γn} satisfy Assumption 3.2 (iii) and (iv),
respectively, and {Sn} is a countable family of generalized nonexpansive mappings that is given by (3.1).
Then the sequence {un} converges strongly to RF (Γ)∩A−1(0)u, where RF (Γ)∩A−1(0) is the sunny nonexpansive
retraction from C onto F (Γ) ∩A−1(0).

Proof. Step 1: To show that Cn and Qn are closed and convex for all n ∈ N. Closedness of Cn is obvious
from its definition and it can also be seen from the definition of Qn that it is closed and convex for each
n ∈ N. To show that Cn is convex, observe from the definition of Cn that

φ(x, yn) ≤ φ(x, un)

implies that for all x ∈ Cn,

‖un‖
2 − ‖yn‖

2 − 2 〈x, Jun − Jyn〉 ≥ 0,

which is affine in x, and thus Cn is convex. Hence, the closedness and convexity of Cn ∩ Qn ⊂ E for all
n ∈ N is established.
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Step 2: To establish that F (Γ)∩A−1(0) ⊂ Cn∩Qn. Setting ωn = RC (Jrnun) and for p ∈ F (Γ)∩A−1(0),

φ (p, xn) = φ
(

p, J−1 (βnJun + (1− βn)JSnωn)
)

= ‖p‖2 − 2 〈p, βnJun + (1− βn)JSnωn〉+ ‖βnJun + (1− βn)JSnωn‖
2

≤ ‖p‖2 − 2βn 〈p, Jun〉 − 2(1− βn) 〈p, JSnωn〉+ βn‖un‖
2 + (1− βn)‖Snωn‖

2

= βnφ (p, un) + (1− βn)φ (p, Snωn)

≤ βnφ (p, un) + (1− βn)φ (p, ωn) (by generalized nonexpansive property of Sn) (3.7)

= βnφ (p, un) + (1− βn)φ (p,RK (Jrnun))

≤ βnφ (p, un) + (1− βn)φ (p, Jrnun) (by the property of RC)

≤ βnφ (p, un) + (1− βn)φ (p, un) (by generalized nonexpansive property of Jrn)

= ϕ (p, un) .

Wherefore,

φ (p, yn) = φ
(

p, J−1 (γnJxn + (1− γn)JSnωn)
)

= ‖p‖2 − 2 〈p, γnJxn + (1− γn)JSnωn〉+ ‖γnJxn + (1− γn)JSnωn‖
2

≤ ‖p‖2 − 2γn 〈p, Jxn〉 − 2(1− γn) 〈p, JSnωn〉+ γn‖xn‖
2 + (1− γn)‖Snωn‖

2

= γnφ (p, xn) + (1− γn)ϕ (p, Snωn)

≤ γnφ (p, xn) + (1− γn)φ (p, ωn)

= γnφ (p, xn) + (1− γn)φ (p,RC (Jrnxn))

≤ γnφ (p, xn) + (1− γn)φ (p, Jrnxn)

≤ γnφ (p, xn) + (1− γn)φ (p, xn)

≤ γnφ (p, un) + (1− γn)φ (p, un)

= ϕ (p, un) .

This justifies that p ∈ Cn for all n ∈ N and thus F (Γ) ∩ A−1(0) ⊂ Cn. Induction will be used to
show that F (Γ) ∩ A−1(0) ⊂ Qn for all n ∈ N. By definition, for n = 1, F (Γ) ∩ A−1(0) ⊂ C = C0 ∩ Q0.

Recall that J is one-to-one. Wherefore J (Cn ∩Qn) = JCn ∩ JQn and it known to be closed convex (See
e.g., [2]). Lemma 2.7 gives that Cn ∩ Qn is a sunny generalized nonexpansive retract of E. Assume that
F (Γ) ∩A−1(0) ⊂ Cj−1 ∩Qj−1 for some j ∈ N. Given that xj = RCj−1∩Qj−1

, application of Lemma 2.5 gives

〈u− uj, Juj − Jv〉 ≥ 0,

for all v ∈ Cj−1 ∩Qj−1. This implies that

〈u− uj , Juj − Jv〉 ≥ 0, ∀ v ∈ F (Γ) ∩A−1(0) (3.8)

since F (Γ)∩A−1(0) ⊂ Cj−1 ∩Qj−1. It can be deduced from the inequality (3.8) and by the definition of Qn

that F (T )∩A−1(0) ⊂ Qi and consequently F (Γ)∩A−1(0) ⊂ Qn for all n ∈ N. Thus, F (Γ)∩A−1(0) ⊂ Cn∩Qn

for all n ∈ N and this confirms that {un} is well defined.

Step 3: This is to show that as n → ∞, un → RF (Γ)∩A−1(0)u. It can be obtained from the definition of
Qn that xn = RQnx. Applying Lemma 2.6 (ii) gives,

φ(u, un) = φ(u,RQnu) ≤ φ(u, x)− φ(RQnu, x) ≤ φ(u, x),

for all F (Γ) ∩ A−1(0) ⊂ Qn. Thus, boundedness of {φ(u, un)} is established. Moreover, it can be deduced
from the definition of φ that {un} , {xn} and {yn} are bounded. Therefore, the limit of {ϕ(u, un)} exists.
One can have from xn = RQnx for each n ∈ N such that

ϕ (un, un+k) = φ (RQnu, un+k) ≤ φ (u, un+k)− φ (u,RQnu) ≤ φ (u, un+k)− φ (u, un) ,
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for a given a positive integer k, which leads to

lim
n→∞

φ(un, un+k) = 0. (3.9)

Lemma 2.10 gives that there exists a strictly increasing, convex and continuous function g : [0, 2r] → [0,∞),
such that for j, k ∈ N with k > j,

g (‖uk − uj‖) ≤ φ (uk, uj) ≤ φ (uk, u0)− φ (uj , u0) .

The property of g leads to the deduction that {un} is Cauchy. Thus, there exists v ∈ C such that un → v.

For un+1 = RCn∩Qnu ∈ Cn, it can be obtained from the definition of Cn,

φ (un+1, un)− φ (un+1, yn) ≥ 0, ∀ n ∈ N. (3.10)

From (3.9) and (3.10), one can deduce that lim
n→∞

φ(un+1, un) = lim
n→∞

φ (un+1, yn) = 0. Apply Lemma 2.9

since E is uniformly convex and smooth to obtain

lim
n→∞

‖un+1 − un‖ = lim
n→∞

‖un+1 − yn‖ = 0, (3.11)

which yields

lim
n→∞

‖un − yn‖ = 0. (3.12)

Recall that the duality mapping J is norm-to-norm uniform continuous on bounded sets. Therefore

lim
n→∞

‖Jun+1 − Jun‖ = lim
n→∞

‖Jun+1 − Jyn‖ = ‖Jun − Jyn‖ = 0. (3.13)

From (3.7), observe that

φ (p, ωn) ≥
1

(1− βn)
(φ (p, xn)− βnφ (p, un)) .

Since ωn := RC (Jrnun) , thus,

φ (ωn, un) = φ (RC (Jrnun) , un) ≤ φ (p, un)− φ (p, ωn) ( by Lemma 2.6 (ii),)

≤ φ (p, un)−
1

(1− βn)
(φ (p, xn)− βnφ (p, un))

=
1

(1− βn)
(φ (p, un)− φ (p, xn))

=
1

(1− βn)

(

‖un‖
2 − ‖xn‖

2 − 2 〈p, Jun − Jxn〉
)

≤
1

(1− βn)

(

|‖un‖
2 − ‖xn‖

2|+ 2| 〈p, Jun − Jxn〉 |
)

≤
1

(1− βn)
(|‖un‖ − ‖xn‖| (‖un‖+ ‖xn‖) + 2‖p‖‖Jun − Jxn‖)

≤
1

(1− βn)
(‖un − xn‖ (‖un‖+ ‖xn‖) + 2‖p‖‖Jun − Jxn‖) .

By (3.12) and (3.13), one can have that lim
n→∞

φ (ωn, un) = 0. So Lemma 2.9 gives that

lim
n→∞

‖ωn − un‖ = 0. (3.14)



M. O. Aibinu, S. Moyo, Commun. Nonlinear Anal. 2 (2023), 1–15 12

Moreover,

‖Jun+1 − Jxn‖ = ‖Jun+1 − βnJun − (1− βn)JSnωn‖

= ‖(1− βn) (Jun+1 − JSnωn)− βn (Jun − Jun+1) ‖

≥ (1− βn)‖Jun+1 − JSnωn‖ − βn‖Jun − Jun+1‖.

Thus

‖Jun+1 − JSnωn‖ ≤
1

(1− βn)
(‖Jun+1 − Jxn‖+ βn‖Jun − Jun+1‖) .

It is already given that lim inf
n→∞

(1− βn) > 0. Considering (3.12) leads to

lim
n→∞

‖Jun+1 − JSnωn‖ = 0.

By the norm-to-norm uniform continuity of J−1 on bounded sets, one can have that

lim
n→∞

‖un+1 − Snωn‖ = 0. (3.15)

Also observe that
‖un − Snωn‖ ≤ ‖un − un+1‖+ ‖un+1 − Snωn‖.

Apply (3.11) and (3.15) to obtain

lim
n→∞

‖un − Snωn‖ = 0. (3.16)

In a similar manner, observe that

‖ωn − Snωn‖ ≤ ‖ωn − un‖+ ‖un − Snωn‖,

which by (3.14) and (3.16) leads to

lim
n→∞

‖ωn − Snωn‖ = 0. (3.17)

Since {Sn} satisfies the NST-condition with Γ, one can have that

lim
n→∞

‖ωn − Sωn‖ = 0 ∀ S ∈ Γ. (3.18)

From (3.14) and (3.18), it can be obtained that

‖un − Sωn‖ ≤ ‖un − ωn‖+ ‖ωn − Sωn‖ → 0 as n → ∞.

Since it is known that un → v, one can deduce by (3.14) that ωn → v. The elements of the set Γ are
known to be closed. Therefore S is closed as it belongs to Γ. Furthermore, ωn → v, hence v is a fixed point
of S.

It is necessary to show that v ∈ A−1(0). Since E is uniformly smooth, one can have from (3.14) that

lim
n→∞

‖Jun − Jωn‖ = 0.

For λn ≥ a, it is obtained that

lim
n→∞

1

λn

‖Jun − Jωn‖ = 0.

Accordingly,

lim
n→∞

‖Aλn
un‖ = lim

n→∞

1

λn

‖Jun − Jωn‖ = 0.

Since A is monotone, for (ρ, ρ∗) ∈ A,

〈ρ− vn, ρ
∗ −Aλn

un〉 ≥ 0 for all n ∈ N.
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Consequently, as n → ∞,

〈ρ− v, ρ∗〉 ≥ 0.

The maximal monotone property of A gives that v ∈ A−1(0). Finally, it is necessary to show that v =
RF (Γ)∩A−1(0)u. By Lemma 2.6,

φ
(

v,RF (Γ)∩A−1(0)u
)

+ φ
(

RF (Γ)∩A−1(0)u, u
)

≤ φ (v, u) .

Since un+1 = RKn∩Qnu and v ∈ F (Γ) ∩A−1(0) ⊂ Cn ∩Qn, applying Lemma 2.6 gives,

φ
(

RF (Γ)∩A−1(0)u, un+1

)

+ φ (un+1, u) ≤ φ
(

RF (Φ)∩A−1(0)u, u
)

.

By the definition of φ, it can be obtained that φ (v, u) ≤ φ
(

RF (Γ)∩A−1(0)u, u
)

and φ (v, u) ≥ ϕ
(

RF (Γ)∩A−1(0)u, u
)

,

therefore, φ (v, u) = φ
(

RF (Γ)∩A−1(0)u, u
)

. Thus, since RF (T )∩A−1(0)u is unique, then v = RF (Γ)∩A−1(0)u.

The following results can be deduced from Theorem 3.4.

Corollary 3.5. Let E be a uniformly convex and uniformly smooth Banach space E, C be a nonempty
closed convex subset of E and RC : E → C be a sunny and generalized nonexpansive retraction from E onto
C. The resolvent associated with a maximal monotone operator A ⊂ E × E∗ will be denoted by Jλ : E → E

for all λ > 0. Let G1 and G2 be closed generalized nonexpansive mappings of C into E with Γ = {G1, G2}
such that F (Γ) ∩A−1(0) 6= ∅. Suppose that for each n ∈ N, the sequence {un} is defined by











































u1 = u ∈ C, C0 = Q0 = C,

xn = J−1 (βnJun + (1− βn)JSnRC (Jλn
un)) ,

yn = J−1 (γnJxn + (1− γn)JSnRC (Jλn
un)) ,

Cn = {x ∈ Cn−1 ∩Qn−1 : φ(x, yn) ≤ φ(x, un)} ,

Qn = {x ∈ Cn−1 ∩Qn−1 : 〈un − x, Ju− Jun〉 ≥ 0} ,

un+1 = RCn∩Qnu,

where J is the duality mapping on E and {Sn} is a countable family of generalized nonexpansive mappings
such that the mapping Sn of C into E is given by

Snu = J−1 (αnJG1u+ (1− αn)JG2u) ∀ u ∈ C. (3.19)

Then the sequence {un} converges strongly to RF (Γ)∩A−1(0)u, where RF (Γ)∩A−1(0) is the sunny nonexpansive
retraction from C onto F (Γ) ∩A−1(0).

Proof. By letting N = 2 in (3.1), the desired result follows from Theorem 3.4.

Corollary 3.6. Let E be a uniformly convex and uniformly smooth Banach space E, C be a nonempty closed
convex subset of E and RC : E → C be a sunny and generalized nonexpansive retraction from E onto C. The
resolvent associated with a maximal monotone operator A ⊂ E × E∗ will be denoted by Jλ : E → E for all
λ > 0. Let G1, G2, ..., GN be closed generalized nonexpansive mappings of C into E with Γ = {G1, G2, ..., GN}
such that F (Γ) ∩A−1(0) 6= ∅. Suppose that for each n ∈ N, the sequence {un} is defined by































u1 = u ∈ C, C0 = Q0 = C,

xn = J−1 (βnJun + (1− βn)JSnRC (Jλn
un)) ,

Cn = {x ∈ Cn−1 ∩Qn−1 : φ(x, yn) ≤ φ(x, un)} ,

Qn = {x ∈ Cn−1 ∩Qn−1 : 〈un − x, Ju− Jun〉 ≥ 0} ,

un+1 = RCn∩Qnu,

where J is the duality mapping on E and {Sn} is a countable family of generalized nonexpansive mappings
such that the mapping Sn of C into E is given by (3.1). Then the sequence {un} converges strongly to
RF (Γ)∩A−1(0)u, where RF (Γ)∩A−1(0) is the sunny nonexpansive retraction from C onto F (Γ) ∩A−1(0).
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Proof. By letting γn = 1 for all n ∈ N in Theorem 3.4, the desired result follows.

Corollary 3.7. Let E be a uniformly convex and uniformly smooth Banach space E, C be a nonempty
closed convex subset of E and RC : E → C be a sunny and generalized nonexpansive retraction from E onto
C. The resolvent associated with a maximal monotone operator A ⊂ E × E∗ will be denoted by Jλ : E → E

for all λ > 0. Let G are closed generalized nonexpansive mappings of C into E such that F (G)∩A−1(0) 6= ∅.
Suppose that for each n ∈ N, the sequence {un} is defined by











































u1 = u ∈ C, C0 = Q0 = C,

xn = J−1 (βnJun + (1− βn)JGRC (Jλn
un)) ,

yn = J−1 (γnJxn + (1− γn)JGRC (Jλn
un)) ,

Cn = {x ∈ Cn−1 ∩Qn−1 : φ(x, yn) ≤ φ(x, un)} ,

Qn = {x ∈ Cn−1 ∩Qn−1 : 〈un − x, Ju− Jun〉 ≥ 0} ,

un+1 = RCn∩Qnu,

where J is the duality mapping on E. Then the sequence {un} converges strongly to RF (G)∩A−1(0)u, where
RF (G)∩A−1(0) is the sunny nonexpansive retraction from C onto F (G) ∩A−1(0).

Proof. By letting N = 1 in (3.1), it is obvious that {Sn} = {G} . Therefore, the desired result follows from
Theorem 3.4.

The result below is in the framework of Hilbert spaces and its proof can be deduced from the main result
of this paper.

Corollary 3.8. Let H be a Hilbert space with C a nonempty closed convex subset of H and PC : H → K be a
metric projection from H onto C. For all λ > 0, let Jλ : H → H denote the resolvent which is associated with
a maximal monotone mapping A ⊂ H ×H. Let G1, G2, ..., GN be closed generalized nonexpansive mappings
of C into H with Γ = {G1, G2, ..., GN} such that F (Γ) ∩ A−1(0) 6= ∅. For each n ∈ N, define the sequence
{un} by











































u1 = u ∈ C, C0 = Q0 = C,

xn = J−1 (βnJun + (1− βn)JSnRC (Jλn
un)) ,

yn = J−1 (γnJxn + (1− γn)JSnRC (Jλn
un)) ,

Cn = {x ∈ Cn−1 ∩Qn−1 : φ(x, yn) ≤ φ(x, un)} ,

Qn = {x ∈ Cn−1 ∩Qn−1 : 〈un − x, Ju− Jun〉 ≥ 0} ,

un+1 = RCn∩Qnu,

where {Sn} is a countable family of generalized nonexpansive mappings such that the mapping Sn of C into
H is given by

Snu =
N
∑

k=1

αknGku ∀ u ∈ C,

where {αkn}
N
k=1 is a sequence in [0, 1] satisfying the Assumption 3.2 (i) and (ii). Then the sequence {un}

converges strongly to RF (Γ)∩A−1(0)u, where RF (Γ)∩A−1(0) is the metric projection from C onto F (Γ)∩A−1(0).

Proof. It is generally known that in a Hilbert space, φ(u, v) = ‖u− v‖2 for all u, v ∈ H and J is the identity
mapping. Therefore, the desired result readily follows from Theorem 3.4.
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4. Conclusion

This study has made a significant contribution to the fundamental quest on how to solve some important
nonlinear problems. Most important nonlinear problems in mathematics can be reduced to finding the
fixed points of a certain operator with contractive type conditions. An eminent class of the nonlinear
operators is the class of nonexpansive mappings. Algorithms on the class of nonexpansive mappings have
been successfully applied in several areas such as signal processing and image restoration. Also, amny
problems can be modelled as contructing zeros of a maximal monotone operator. This study introduced a
new countable family of generalized nonexpansive mappings and presented a new monotone hybrid algorithm
in the framework of Banach spaces. This study presented the procedures which are easy to follow in obtaining
a common element of the zero point set of a maximal monotone operator and the newly introduced countable
family of generalized nonexpansive mappings.
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