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Abstract

In this manuscript, a generalized fixed point theorem of Hardy-Rogers type contraction is proved in cone Ap-
metric spaces, which relaxes the contraction condition. Also, some fixed point results for different contraction
mappings are given in such spaces.
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1. Introduction and Preliminaries

Ever since S. Banach proved the Banach fixed point theorem in 1922, many authors have tried to
generalize this conclusion. Usually these studies have been obtained by generalizing the concept of metric
space or by generalizing the contraction mappings. There are different generalizations of metric space in
the literature. Some of them are b-metric space [7], cone metric space [9], cone b-metric space [10], A-
metric space [1], Ap-metric space [14] and cone Aj-metric space [13]. Many authors were proved fixed point
theorems for analogue of Banach, Kannan, Chatterjea, Reich and Ciri¢ contraction principles and for various
generalized contractions in these generalized spaces (see, e.g., ([1], [2], [4], [10], [13], [14], [15], [17]).

In present manuscript, firstly, we will give an analogue of Hardy-Rogers type contraction in cone Ap-
metric spaces. Secondly, we will prove a fixed point theorem for class of this mappings under appropriate
conditions in cone Ap-metric spaces. Finally, we will give some results on fixed point using our main theorem.

We repeat some definitions and results, which will be needed in the sequel.

Definition 1.1. [9] Let V' be a Banach space. A subset W of V' is called a cone if and only if
1. W is non-empty closed and W # {0} ;
2. au+ pv € W for all u,v € W and non-negative real numbers «, 3;

3. W (—W) = {o}.
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Let V be a Banach space and W C V be a cone. The partial ordering of the elements in V' is defined as
u < wv if and only if v —u € W. Moreover, we will indicate that

u < viff u <vandu#w,
u K viff v—u € intW,

where intW denotes the interior of W. A cone W is called normal if there is a positive real number K such
that
0<wu<wvimplies ||u|[<K | v

for all u,v € V.

Definition 1.2. [13] Suppose that V is a real Banach space, W is a cone in V with intW # () and ”<” is
partial ordering in V with respect to W. Let U be nonempty set. Suppose a mapping A : U* — V satisfies
the following conditions:

1) 0 < A(ug,ug, .oy up—1,u),

2) A(ug,ugy oy Up—1,ut) if and only if u1 = us = ... = uy_1 = w4,

A(ul, Uy oeey (ul)tfl, U) + A(UQ, U,y oeey (UQ)tfl, U) + ...

F A1, U1y ey (U1 )1, 0) + Aug, wgy ony (Ug)p—1,0)

for any u;,v € U, (i =1,2,...,t) and b > 1. Then, (U, A) is said to be a cone A,-metric space.

=0
3) A(uy,ug,...;up—1,u) <b

It is clear that cone A,- metric spaces is generalization ordinary metric spaces, b-metric space, cone
metric space, cone b-metric space, A-metric spaces and cone A-metric spaces.

Example 1.3. [13] Let V = R? and W = {(u,v) € V : u,v > 0} a normal cone in V. Let U = R and
A :U' =V be such that

A(U1, U2y weey Ut—1, ut) = A*(uly U2y weey Ut—1, Ut)(Oé, 5)
where a, f > 0 are constants and A, is an Ay-metric on U. Then (U, A) is a cone A,- metric space.

Lemma 1.4. [13] Let (U, A) be a cone Ap-metric space. Then for all u,v,z € U,

1) d(u,u, ..., u,v) < bd(v,v,...,v,u),

2) d(u,u, ...,u,z) < b(t —1)d(u,u,...,u,v) + bd(z, z, ..., z,v).
Lemma 1.5. [13] Let (U, A) be a cone Ay-metric space and, let W be a normal cone with normal constant
K.

i) The sequence {un} in U converges to u if and only if A(tp, U, ..., Up,u) — 0 as n — oo.

it) Let {u,} be a sequence in U. If {u,} converges to u and {u,} converges to v, then w=v. That is,

the limit of a convergent sequence is unique.
i11) The sequence {u,} in U is a Cauchy sequence if and only if A(tp,Up, ..., Un, Up) — 0 as n,m — 00.

2. Main Results

In this section, we first introduce the notion of Hardy-Rogers type contraction mappings in cone Ap-metric
space as follows:

Definition 2.1. Let (U, A) be a cone Ap-metric space and 7' : U — U be a mapping. T is called a
Hardy-Rogers type contraction mapping, if and only if, there exist o, 8,7 € Rt with ab® + 3 (62 + 1) +
b2 [1+b(t —1)] < 1 and b < t such that for all u,v € U,

A(Tu,Tu,...,Tu,Tv) < aA(u,u,...,u,v)+ (2.1)
BlA(u,u, ... ,u,Tu) + A(v,v,...,v,Tv)]
+v[A(u,uy ..., u, Tv) + A(v,v,...,v,Tu)].
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It is clear that if we take ¢ = 2 and b = 1 in the Definition 2.1, we obtain the contractive definition of
Hardy-Rogers (2.2) in ordinary metric space (U, d) as follows:
Let (U,d) be a metric space and let T': U — U be a mapping. Then there exists constants «, 5,7 > 0
such that
d(Tu,Tv) < ad(u,v) + B [d(u, Tu) + d(v, Tv)] + v [d(u, Tv) + d(v, Tu)] (2.2)

for all u,v € U, where a + 28 4+ 2v < 1.
Our main result is as follows.

Theorem 2.2. Let (U, A) be a complete cone Ap-metric space and let W be a normal cone with normal
constant K. Suppose the mapping T : U — U is a Hardy-Rogers type contraction mapping as Definition
2.1. Then T has a unique fixed point in T and Picard iteration {u,} defined by u,1 = Tu, converges to a
fixed point of T.

Proof. Let up € X and a sequence {u,} be defined by u, 11 = Tu,. Suppose u, # u,41 for all n.
Taking u = u,, and v = uy,41 at the inequality (2.1), we get

A(Upytny sty tny1) = A(Tup—1,Tup—1,...,Tup—1,Tuy) (2.3)
< @A (Up—1,Up—1y e ey Up—1, Up) +
5 A(unflaunfla---,unflaTunfl)
+A (U, Uny ooy Uy, Tuy,)
+y [ A(un—1,un—1,-- - un_1,Tup)
| A (Un, Uy U, T 1)
= @A (Up—1,Up—1y--,Up_1,Up)
18 A (unflyunfla s aunflaun)
| A (U, Uy Uy Ung1)
+v [A (un—17 Up—15-- -5 Un—1, un-l—l)] .

Applying Lemma 1.4 and the inequality (2.3), we get

A UpyUpy ooy Upy Upt1) < Q@A (Up—1,Un—1, .oy Up—1,Up) (2.4)
—l—ﬁ[ (Up—1, Up— 1,...,un1,un)]
A (Upyy Upyy « e vy Uy Upp 1)
+7b [(t—1)A (Up—1,Up—1y--, Up—1,Up)
(Un+1, Uptly .-y Upt1, Un)]
< Up—1,Un—1, -+, Un—1,Unp)
[ (Up—1, Up— 1,...,un_1,un)]
FA (Upy Upyy e oy Uy Upyg 1)
Yb(t — 1) A (Up—1,Up—1, -y Up—1,Up)
’yb A (Upyy Uy e o ey Uy Uy 1)

= [a + /8 + Vb(t - 1)] A (un—hun—h s 7un—1aun)
+ (5 + 762) A (un7un7 M 7unaun+1) .
From (2.4), we have
[1 — B - fbe] A (Upy Upyy e ooy Uy Upt1) < [+ B4+ 40t — 1) A (Un—1, Un—1, .-, Up—1, Up)
This implies

a+ [ +b(t—1)
1—p—b?

A (Upy Upy e ey Upyy Upg1) < ( > A(Up—1,Up—1y ey Up—1,Up) -
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Using above inequality, we have
AUy Upy e ooy Uy Upg1) < OA (Up—1, Up—1y -« oy Un—1, Up)
where
§ = atﬁ_zw_bgb; D) <1, (2.5)
as ab® + B (b2 + 1) + b [L +b(t — 1)] < 1.
Repeating iteratively, we obtain
A (Upy Upy ooy Upy Unt1) < OA (Up—1, Un—1y .oy Up—1,Up) (2.6)
< §%A (Up—2yUp—2, oy Up—2,Up—1)
< 0"A (ug,ug, ..., up,uy) -

Assume that m > n. Using Lemma 1.4 and the above inequality, we get

A(UpyUny ooy Uy U) < b (E—1) A (Un,y Upy e e vy Uy Upt1) +

b2 A (U1, Ung 1 - - - 5 U1 s U
< b(t—1) A(up,Un, -y UpyUpt1) +
B2 b(t—1) A(Upt1, Unt1y---s Untls Unt2)
V2A (Upto, Unyos - - s Unt2, Um)
= b(t—1)A(Up,Un,. ., Up,Upt1) +
b3 (t — 1) A (U1, Ung1s - - - 5 U1, Un2)
+b A (U, Ungas - - - s Unto,s Up)
< b(t—1) A(Uny Upy - vy Up, Upt1)
+0% (t — 1) A (Up1s Ung1s - - - s Ung1s Unt2)
+0° (t — 1) A (Ung2s Unsas - - - s Unto, Unis)
+00A (Upg s Ung3s - - - s Unge3, Unn)
< b(t—1) A(up, U,y -y Upy Upt1)
03 (t = 1) A (U1, Ung1s - - o s Unp1s Uni2)
405 (t = 1) A (Upg2, Ungs - oo s Ung2, Ungs) + - - -
+p2m=n=1) 4 (Unt-(m—n—1)> Unt-(m-n—1)s - - - » Unt(m—n—1)s tm)
= b(t—1)A(Up,Un,. ., Up, Upi1)
403 (t — 1) A (U5 Ung1s - - - s Unp1s Uni2)
+0° (t — 1) A (Upg2, Untas - - - Ung, Unis) + - -
Hp2m=n=1) 4 (Upn—1s Upn—Ts -+« + s U1, Upy) -

Applying (2.6) in above inequality, we have
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A Upy Upy ooy Uy U) < b(E—1) A (Upy Upy e vy Upy Upt1) (2.7)
+03 (t — 1) A (Unp1s Ung1s - - - s Unp1s Unt2)
+0° (t — 1) A (Upg2s Untos - - - Ung, Unis) + - -
+p2m=n=1) 4 (Upn—1s Umn—1y « + + s Up—1, Uy
< b(t—1)0"A (ug,ug, ..., ug,ui)
+b% (t — 1) 6" A (ug, uo, . . ., ug, uy)
+0° (t — 1) "2 A (ug, uo, . . . , ug, uy) + - - -
+2m = LA (g, g, - g, ur)
= b(t—1)0" [1+b%5 + 6% + - + P2 2gmonl]
A (ug,ug, . .., up,uy)
< %A (ug, Up, - - -, U, U1 ) -
Since § = %jﬁ;l) < 1and ab® + Bb (b? + 1) +b* (¢t — 1 + b) < 1, we obtain
ab® + Bb? + b3 (t — 1) 1:>a—|—5+fyb(t—1) 1 (2.8)
1— 3 —~b? 1— 38— ~b? b2
s_atftabt—1) 1
1— 38— ~b? b2
= 6’ < 1.

Since (U, A) is a cone Ap-metric space with normal constant K, using (2.7) we have

A (tny Uy« ey Uy uy)|| < K

From the inequality (2.5), we know that 0 < § < 1.
m,n — oo in above inequality, we get

lim

| A (un, tn,
,1Mm—00

This implies that

lim A (up, up,
n,m—00

b(t—1)6"

1

—b26 HA(UO,UO,...,UO,Ul)H.

Let [|A (ug,uo,...,up,u1)| > 0. If we take limit as

e Un, U || = 0.

ey Uy, Upy) = 0.

Thus {u, } is a Cauchy sequence in U. Also, suppose that || A (ug, uo, - .., ug, u1)|| = 0, then A (up, Un, . . ., Up, Um) =
0 for all m > n and {u,} is a Cauchy sequence in U. Since (U, A) is a complete metric space, the sequence

{un} converges to u* € X .
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Now, we show that u* is a fixed point of 7. From (2.1), we get

A u, . ut Tu®) < b(t—1) AW u, .. u*, Tuy) + b A(Tun, Ty, . . ., Tuy, Tu®)
< b(t—=1)A(uu* . u upy) (2.9)

F02 QA (U, U, - -y Uy, ™)
+02B[A (U, Uy - oy Up, Tuy) + A (u,u®, .. u*, Tu®)]
+0% [A (U, Uy - - o U, TU®) + A (u* u®, L, Tuy)]

= b(t—1) A u*, . U upg) + DPaA (Un, Un, . . U, uF)
+U2BA (U, Uy oy Upy Ung1) + UPBA (u*,u*, ... u*, Tu®)
FUPYA (U, Uy - o o U, TU) + B2y A (W u®, L u™ Upgr)

< [P (t—1) + %] A (Ung1, tnsts- .o s Ungr, u¥)
F02 QA (U, Uy« ooy Uy ) + D2BA (Ugyy U, -+ o 3 Uy Uy 1)
+V2BA (v, u*, ... u*, Tu®)

#01| i

[b2 (t—1)+ bgﬂ A (U1, Upt 1y -« o s Upp1, U)

+02BA (U, Uy - .y Uy, Upg1)

+ [b20z + b3y (t — D] A (untn, - o s g, u®)

+ (bQﬁ + b47) A u* . u Tu®)

From (2.9), we get
[1 - (bZﬁ + b4fy)] A u*y. o u Tu™) < [62 (t—1)+ bgfy] A (Upg 1y U1y e v ey Upp1, U)
+b25A (un, Upy -5 Un, un+1)
+ [b2a + b3y (t — D] A (un, ug, ..o up,u®).
This implies that
- 1 { (6% (t — 1) + b%]
I (b25 + b4’7) A (Un+1, Un+1y .-+ Un+l, U*)
—i_b2/814 (un7 Unys -+« 5 Un, un—l—l)
+ [b2a+b3fy (t— 1)] A(un,un,...,un,u*)}. (2.10)

A u*, . u Tu®)

Using (2.8), we have

1—B—b? 2N

a+ B +b(t—1) _ 1

This implies that
1 a+B+qb(t—1) )
— b(t—1 b 2.11
R Ty >a+B+b(t—1)> B+ (2.11)

for b < t.
It follows from (2.11) that
1— (1*B+b"y) > 0.

Using (2.10), we get

1 (b7 (£ — 1) + b%]
A b, ot T < K )
|| (u “ “ “ )H B 1-— (b2,8 + b4'7) { ||A (un+1,un+1, sy Un41,U )H

+b25 ||A (un? Uny -5 Un, unJrl)H
- [820 839 (¢ = 1)] 1A (st -ty ")} (2.12)
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If we take limit for n — oo in above inequality (2.12), we obtain

lim [|A (v, v, ..., u*, Tu")|| = 0.

n— o0

This implies that A (u*,u*,...,u*, Tu*) = 0, that is, Tu* = u*. Therefore u* is a fixed point of the
mapping T'. Finally, we show that the uniqueness of fixed point of T'. Let v* be another fixed point of T'.
That is, Tu* = u* and Tv* = v*. Using (2.1), we obtain

A uy. w0t = A(Tu",Tu*, ..., Tu", Tv") < A (u*,u”, ..., u*,v")
+L[A (u u*, .o u Tu™) + A (0", v*, ... 0", To")]
+y[A (u*u”, . ut, To") + A (v o%, . 0", Tu))
A (u*, u*, . v*) +
A(v*,v*,...,v ,u®)
= [a+~v(1+b)] AW u", ... ,u* 0"

= aA(u"u*, . ut ") +y

then,
l—a—v14+b] A" u*...,u"0v*) <0,

where 1—a—v(14b) > 0, as ab*+ 3 (b + 1) +~b* [1 + b (¢t — 1)] < 1. This implies that A (u*, u*,... ,u*,v*) =
0 = «* = v* and hence, T has a unique fixed point in U. O

If we take f =+ = 0 in Theorem 2.2, we obtain the following result (see Theorem 3.1 in [13]). Theorem
2.2 is also generalize Lemma 4.1 in [14] and some results in [16] from Aj-metric space to cone Ajp-metric
space.

Corollary 2.3. [13] Let (U, A) be a complete cone Ay-metric space and let W be a normal cone with normal
constant K. Suppose the mapping T : U — U satisfies the following condition:

A(Tu,Tu,...,Tu,Tv) < aA(u,u,...,u,v)

for all u,v € U, where 0 < a < b%‘ Then T has a unique fized point in T and Picard iteration {u,} defined
by Upy1 = Tuy, converges to a fixed point of T'.

If we take a = v = 0 in Theorem 2.2, we have the following result.

Corollary 2.4. Let (U, A) be a complete cone Ap-metric space and let W be a normal cone with normal
constant K. Suppose the mapping T : U — U satisfies the following condition:

A(Tu,Tu,...,Tu,Tv) < B[A(u,u,...,u,Tu) + A(v,v,...,v,Tv)]

for all u,v € U, where 0 < § < bQil Then T has a unique fized point in T and Picard iteration {uy}

defined by up11 = Tu, converges to a fixed point of T'.

Remark 2.5. Corollary 2.4 expands the Theorem 3.2 in [13], relaxed the contraction condition from 0 <
£ < min {%, m} to0 <8< ﬁ. Clearly, Kannan type contraction mapping in above corollary is not
depend on t-dimension.

Putting @ = 8 = 0 in Theorem 2.2, we obtain the following result (see Theorem 3.3 in [13]).

Corollary 2.6. [13] Let (U, A) be a complete cone Ay-metric space and let W be a normal cone with normal
constant K. Suppose the mapping T : U — U satisfies the following condition:

A(Tu, Tu,...,Tu,Tv) < ~vA(u,u,...,u,Tv) + A(v,v,...,v,Tu)

for allu,v € U, where 0 < v < m Then T has a unique fized point in T and Picard iteration {uy}
defined by up11 = Tu, converges to a fixed point of T'.



Isa Yildirim , Commun. Nonlinear Anal. 2 (2023), 1-9 8

Based on the above corollaries and remark, we can say that our main Theorem 2.2 combines Theorem
3.1-3.3 in [13] under a single theorem and generalizes some results.
Now, using Theorem 2.2, we give the following corollaries without proofs.

Corollary 2.7. Let (U, A) be a complete cone Ap-metric space and let W be a normal cone with normal
constant K. Suppose the mapping T : U — U satisfies the following condition:

A(Tu, Tu,...,Tu,Tv) < aA(u,u,...,u,v)+ BAu,u,...,u,Tu)
+0A(v,v,...,v,Tv)

for all u,v € U, where 0 < ab? + (3+6) (bQTH) < 1. Then T has a unique fized point in T and Picard
iteration {u,} defined by un4+1 = Tu, converges to a fized point of T

Corollary 2.8. Let (U, A) be a complete cone Ap-metric space and let W be a normal cone with normal
constant K. Suppose the mapping T : U — U satisfies the following condition:

A(Tu,Tu,...,Tu,Tv) < aA(u,u,...,u,v)+ BAu,u,...,u,Tu)
+0A(v,v,...,v,Tv) +~vA(u,u,...,u,Tv)
+nA(v,v,...,v,Tu)

for all u,v € U, where 0 < ab® + (B +0) <sz+1> + (B B2 [1+b(t —1)] < 1. Then T has a unique fizved
point in T and Picard iteration {u,} defined by un+1 = Tu, converges to a fized point of T.

Remark 2.9. Above Corollaries 2.3-2.8 also generalize Banach contraction prenciple [3], Kannan contraction
prenciple [11], Chatterjea contraction prenciple [5], Reich contraction prenciple [12], Ciri’c contraction
prenciple [6] and Hardy-Rogers contraction prenciple [8] from to ordinary complete metric space (U, d) to
complete cone Ap-metric space.
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