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Abstract

In this paper, we establish sufficient conditions for the existence, uniqueness, and continuous dependence
of generalized solution of a semi-linear pseudo-parabolic problem with Neumann condition and integral
boundary condition of first type. The results are by the application of the method based on a priori
estimate "energy inequality” and the finite element method based on the Faedo-Galerkin technique.
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1. Introduction

In the recent years, a new attention has been given to non-linear partial differential equations problem
which involve an integral over the spatial domain of a function of the desired solution on the boundary
conditions ; see [1, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

The purpose of this paper is to prove the existence and uniqueness of a solution for the following pseudo-
parabolic problem with Neumann condition and integral boundary condition of first type. The plan of this
paper is as follows. In section 2 we give some notations used through out the paper. Section 3 is devoted to
statement of the problem . In section 4 we construct an approximate solution using finite element method.
in section 5 we give some a priori estimates. Finally in the section 6, we prove the convergence and we give
the existence result where we prove the uniqueness and the continuous dependence of solution.
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2. Notation

Let L? (Q) be the usual space of square integrable functions ; its scalar product is denoted by (.,.) and
its associated norm by ||.||. We denote by Cp (€2) the space of continuous functions with compact support
in Q.

Definition 2.1. We denote by Bj* (Q2) called the Bouziani space, the Hilbert space defined of Cy (€2) for
the scalar product

(z,w)Bm(Q)z/%;”z.E\s?wdx, (2.1)
2 Q

_ \ym—1
aps = [ GoSs @ e

by the norm of the function z from Bj* (2), the nonnegative number

1
2
ol = ([ @222de)” < . (22)

where

then the inequality

(ﬁ )’
Il e < 212 > L (23
holds for every z € By*~* (Q), and the embedding
By~ (Q) = By (Q), (2.4)

is continuous .
Remark 2.2. If m = 0, the space B9 () coincides with L2 (£2).

Definition 2.3. We denote by L3 (Q2) the space consisting of elements z (x) of the space L? () verifying

/a:kz(ar)da::O(k:O,l).
Q

Let X be a space with a norm denoted by ||.||

Definition 2.4. (i) Denote by L? (I, X) the set of all measurable abstract functions u (.,t) from I into X

such that
ol s = ( JE dt) <. (2.5)

(i9)Let C (I; X) be the set of all continuous functions u (.,t) : I — X with
o) = ma £ < oo

Lemma 2.5. Let be v : [0,T] — H be a Bochner integrable function and let A C [0,T], any measurable
subset, so:
i) the function ||v ()| : [0,T] — H is Lebesque integrable and we have,

H/Av(t)dtHHS/Allv(t)|Hdt, (2.6)

it) for each ¢ € H, the function (v(.),¢)y : [0,T] = R is Lebesgue integrable and we have,

(/Av(t) dt,90>H=/A(v (t), )y dt. 2.7)
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Lemma 2.6. Let M be a linear closed subspace from a Hilbert space H. So for every h € H, there exists a
unique u € M such that:
h — = min ||h — 2.8
I =l = xin 1= ol (2.8)

the element u is called the orthogonal projection of h on M relatively to the inner product (.,.) and we note
u = Pyrh. Furthermore, we have the following Pythagorean relation

1Rl17 = | Parhllz + lIB — Parhl - (2.9)
Theorem 2.7 (Cauchy- Schwarz inequality). Let be f and g two functions of L* () ; so
fge Lt (),

and

/Q gl < 1 el e (2.10)

Theorem 2.8 (The Cauchy inequality). Let be a,b € R, and every € > 0, we have

€ 1
bl < Za? + —b2.
jabl = o™+ 52

Lemma 2.9 (Gronwall lemma). Let h(t) and y (t) be two real integrable functions on the interval I, h(T)
nondeceasing, and ¢ a positive constant if

y(t)gh(t)—l—c/ty(r)dT Vvt €1,
0

then
y(t) <h(t)et Vtel.

Definition 2.10. We call a nonlinear differential system the system of the form

X (t) = F[X (t)] (2.11)
t is a real
w1 (t) f1(t)
x2 (t) f2 (t)
xw=| |, Fo=| = |
2 (1) fu (1)

where f; are continuous functions.

Definition 2.11. Let be
IcR — R"

X(®): T — z(t)’

(2.12)

X is the solution of the system (2.11), if X is derivable and continuous function, for every each t € I,
X(t)eland X (t)=F(X(t)).
Theorem 2.12 (The unicity of solution). We suppose that F' is derivable continuous function on E C R"

. So for every each initial condition for tg € I and Xy € E the solution of the system (2.11) if it exists it is
unique.
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Theorem 2.13 (Local existence of solution). Let be tg € R and Xo € R™ . If F is derivable continuous on
Xo, it exists h > 0 such that the solution of the system (2.11) verifying X (to) = Xo exists on the interval
[to, to + h] .

Theorem 2.14 (Global existence of solution). If F' is derivable continuous function on R™ and if the
solution of the system (2.11) verifying X (0) = Xg is bounded on the interval which it exists so the solution
exists on I = [0, +00] .

See artical [22].

3. Statement of the problem

Let be the problem

ot 2 ot

ou(z,t)  0u(z,t) s 9 <321(;(;g’t)) — (u(z,t))" = f(z,1), (3.1)

with the initial condition

u(x,0) = u°, (3.2)
and the boundary conditions
ou
=0
x a9z (bt = (3.3)

fo (x,t) dx—O

with t € [0,7], T < oo ,a € R}, pe N*, x €[0,1].
Through the paper, we will make the following assumptions:
(Hy): feL?(0,T;B5(0,1)),
(Hs) : u® € V where V is defined in the following way

V_{UELQ(O,I):/Olv(x,t)dx—g;(l,t)—()}. (3.4)

Consequently V' is a Hilbert space for (.,.). Moreover for a given function w (z,t), the notation w ()
is used for the same function considered as an abstract function of the variable ¢.
(H3) : f(t,w) € L?(0,1) for each (t,w) € I x L?(0,1) and the following Lipschitz condition

1t w) = £ () | gy < M {1t =#] (14 ol syony + 19/l sgo)) + 10 = 0/l -
Definition 3.1. A weak solution of problem (3.1) — (3.3) means a function
w:[0,T] — L*(0,1)
such that
i)ueL?(0,T;B3(0,1)),

(
du
(ii) u has a strong derivative — € L? (0,T; B3 (0,1)) ,
(
(

dt
i) u (0) = u®,
iv) The identity :

Bl(0,1)

du (t) du P _
< 5 ’U)BI(O : +a(u(t),v)+p <6t’v> — (WP (2,1) ,v) 10,1y = (f (2,1) ,v)
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4. Construction of an approximate solution

Let v1, 92, ..., ©N, ... be a Hilbertian basis of V', such that we devise [a, 8] on N + 1 parts (N € N*) and

we pose

h = Nitl , ti=1ih
We define functions (¢;) by
T — Ti—1
Ti — Ti—1’
pi(r) = L%
Tit1 — T

0,

i=0,1,2,...,N + 1.

Tio1 < x <,

T < x < Tiyg,

ailleurs.

For every each functions (¢;) are of degree 1 with ¢; (z;) = d;;.

Let (V;,) the subspace from V' generated by the first n elements of the basis.
We have to find for each n € N*, the approximate solution which has the following form

Uup, (2,t) = ng (t) i (),
=1

(x,t) € (0,1) x [0,T7,

where g;, € H' (0,T) are unknown functions for the moment.

As we have that u” € V and V,, is a closed subspace from V, we can define in a unique way u® by

0 0
u, = Py u,

where Py, is define in lemma (2.1). By the virtue of the density of UV,, in V' it follows that

0

U,

— % inV ifn — oco.

We note by (g9,) the coordinates of u) in the basis (¢;);, of V;, that is

n
0 __ 0
Up = E :Qm%a
1=1

so, we have to find

u, € H' (0,T; V)

solution of the differential system

(du” ) tal(u ,)_5<du"

un (0)
By replacing (u,) by (4.1) and by using the following notations

aij = (21 05) g0y
Bij = (i ¢5)
Cj = (un, <Pj)B;(0,1)

Fi () = (.91 1(0,1)

and

gn (8) = (g3, (1))

n
=1

9

I

0

pr un’

,w’) = (i) 30y = (F (2,0 95) By »

A= (aij)1gi,j§n7

B = (Bij)i<ij<n
C= (Cj)lgjgn,

F ()=

-

9n =

(F; (D),

(Q?n)?:l :

(4.1)
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The system (4.6) can be written as follows

(A BB) dﬂ + aBg +Cgh = F (1), (4.8)

which is a nonlinear differential system.
We easily prove that (A — fB) is regular matrix, and by virtue Definition (2.10), (2.11) and Theorems
(2.12), (2.13) and (2.14), so the system (4.8) has a unique solution g,, € [H' (0,T)]"

Lemma 4.1. For every n > 1, problem (4.5) — (4.8) has a unique solution u, € H* (0,T;V,,) which has the
form (4.1).
5. A-priori estimates for approximations

Lemma 5.1. For every n € N* functions u, € H' (0,T;V,,) solutions of (4.6) verify

t
| tualar < K7, (5.1)
and )
, L
dun dr < =, (5.2)
dt B1(0,1) &)

where Kand L are two positive constants.

Proof. Multiplying the integral identity (4.6) by g;n (t) and summing up for j = 1,...,n and integrating the
resulting over (0,t), we obtain

1 2 t 2 ﬂ 2
> Il By 0.1y + 0 Jy 2 d7 + =

t t P 1 0112 /6 on2 (53)
= Jo (£, Un) py(0,1) 47 + o (un, un) g1 (0,1) A7 + ) H“nHB;(o,l) Ty [
We have
0 0
[[un HBl 01 = [ u HBl (0,1 S ) ’ (5.4)
50 2 t 2 2
lunllB1 0,1y + 20 Jo llunll” dr + B [Jun||
t t 1 (5.5)
=2/, (f, Un)B;(o,l) dr+2 [, (u‘fl,un)B%(O’l) dr + <2 + 5) Hu
hence, thanks to the Cauchy inequality (5.5)
t
Hun|!231(0 b+ 20 fy lun| dr + B [lun|?
t P2
<
15|LanH01)d il R, dr 56
t
+kmwgwwf+< 5) I
but we have
2 2
Junliago) < g lunll
we get
t
B3 0,1 + 2 = 1) fy llunll d7 + 8 [[unl|?
(5.7)

<LWMH1M+< )H%\+k| Py 97
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we have that )
ftHupH2 dr = ft‘upfl-u ) dr
0 n B1(0.1) 0 n n "
1 2 2O
Lot p—1 Ly 2
= 9 Jo ‘ Un o dr + 9 Jo HunHB%(O,l) dr (5.8)
1,
1 —111? 1
< if(f ‘ ub dr + Zfot l|wn|? dr,
Bl(0,1)
substituting (5.8) in (5.7) we have
2 5\ t 2
gy 0,0 + {200 = 7 ) Jo llunll™dr
< (LI 1 o2, |l p-1l? (5.9)
< IR, ar+ (5B ) 0P+ fo | e
200, B1(0,1)
But
t]] p—1]|? t] p—2 2
0‘ " ‘ dr = fo‘un < Up, dr
B1(0,1) ] N B3(0,1) 1
t p—2 t 2
< 5 )un Codrt g lwnly o 47 (5.10)
1 22" 1
< 5l ) ub dr -+ 7 Jy lun dr.
Bl(0,1)
Since (5.10) so (5.9) can be written
1 1
2 t 2
fonlfigon + (20— 1= 5 - 3 ) filunl?ar
o ) el gl (5.11)
<M, ar+ (548 0P+ gy | e
2(0, BL(0,1)
after p iteration we get
2 AW 2
leallyo) + (20 = 1= 2) i huall? dr
¢ 1 2 ot 2 (5.12)
< iy art (5 8) [0+ g o] an
2(0, B3(0,1)
0O »
t
lunllg o) + (20 = 1= 2) [i luall® dr + 8 a1
= 400 Bl 2 2"
Let be .
1 2o T
2
K= [1sR,,, ar+ (3+8) W0+ 3. (5.14)
we get
lunllB10,1) < K, (5.15)
S0,
! 2
| ealizyon < K7
and .
K
/ || dr < ———, (5.16)
0 20— 1 — =

2
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K
Jun | < 5
dg; . .
on the other hand multiplying (4.6) by —— d " and sum up for j = 1,...,n we obtain
duy, ||* du
[ Py T e e
Elision ot (5.17)
(f dun> +< » dun)
9 Unp, — )
at /gy dt J By,
integrating (5.17) over (0, t)
duy, || duy, ||?
2fy = dr +allun|]* +28 [ | =~ dr
By 00) (5.18)
_ ot duy, dr 49 dun d 012 )
=20 (/s +2 fy (uh, " 7+ aflun],
Bl(0,1) B1(0,1)
by reference by the inequaliy (5.4) we get
duy, ||* du 2
2f0 dtn 1 dT—l—aHunH —i—QBfO —N dr
B;(0,1) (5.19)
:2flt fdﬂ d7'+2ft updﬂ dT—{—aHu
0\" at O\ dt
Bl(o,1) B3 (0,1)
applying the Cauchy inequality
du 2
. .
SHIT. e a1+ g3 WP, ,
but we have
— [Pt d
Jo Il Bl<0 1) dr : ’un i BY(0.1) '
T p=1]l?
< = [T |ub dr + -
-2 " BL(0,1) fo Ju nHBl(O 1)
1 _
< [k 1‘ dr + fKT see equation (5.15)
2 Blo,1) 2
1 2 1
< 3 fg Wy, dr + iKT
B%(O,l)
LT g p2l? 1 2 1
< Z|= b ‘ = -
= 9 [2 0 ’ n 510) d7—+2f0 Hun”B%(o;) dr +2KT
30,
11 _9|2 11 1
< .z t‘ P2 dr+ -~ KT+ -KT,
22 o 2 2 2
after p iteration we get
t
l2I2  dr<T luol? + K (£ 41 (5.21)
o Bl - 2P+1 oawp 9 )
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substituting (5.21) in (5.20) we get

dun 2
o Junl* + 28 i | 2| dr
. - (5.22)
0112
< fo ”fH31(01) dr —i—aHu I"+T <2p+1 H H tK (2;0 + 2>> :
Let be .
_ 2 02 1 1.1
_/O L T <2p+1 VK <2p + 2)) : (5.23)
so we have )
dun, L
— || d7 < —. 5.24
dat || 7= 28 (5.24)
O
6. Convergence and existence result
Theorem 6.1. There exist a function u € L?(0,T;V) with
d
"¢ 12(0,T; B3 (0,1)),
dt
and a subsequence (up, ), C (un), such that
Up, — U N L2 (0,T;V), (6.1)
and i i
U N u 2 . 1
d:k E in L (07T7 B2 (O’ 1)) ’ (62)
when n — 0.
Proof. See article [3]. O

Theorem 6.2. The limit function u from Theorem (6.1) is the unique weak solution to problem (3.1)—(3.3)
in the sense of definition (3.1).

Proof. One: Existence. We have to show that the limit function u satisfies all conditions (i) — (iv) of
definition (3.1) . Obviously, in hght of properties of function w the first two conditions are already seen.
On the other hand, from u (t) = u" + fo s)ds, t € [0,T], written in the proof of Theorem (6.1), we have
directly u (0) = u?, so the initial condltlon is also fulfilled, now we have to see that integral identity obeyed
by w, for this, writing (4.6) for n = ng and integrating on [0, ], it comes

O, (
Iy < 8ks )’sm) ds + a [ (un () ;) ds
Bl

(0,1)
+8 Ji <5“nk(5),¢;> ds — [y (ub, (). 07) gy 0.y 5 (6.3)
= f $),¢i)piondss  VEET],  j=1...m.
By performing a limit process k — oo in (6.3), we get owing (6.1) and (6.2)
fo < 83 , P j) 1 ds—i—afo ), ;) ds
BL(0,1)
~hT) mnn (6.4)

s)
+ﬁf0 <8s’% ds
= [ (f(@s) e)mondss  VEEO,T], =1,
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Differentiating this latter with respect to t we get

(éh;;?)’ S0]'>B5(0,1) talult)e)+h <a%§t) S0j>

— (uP (t) 7%‘)3;(0,1)
:(f(xat)vsoj)B%(OJ) vt € [OaT]a.]Z 1.

From where (iv) is obtained due the density of U,V,, in V' . Thus, u weakly solves problem (3.1) — (3.2) .
Two : Uniqueness . Writing the problem (3.1) — (3.3) in the form

ou (z,t) 0%u (x,t)

(6.5)

T v e f(z, tu(x,t)), (6.6)
which 5 /o
fz,t,u(z,t) = (u(z,t)? + 6% <1g;a;,t)> + f(x,t). (6.7)

Let us (@, 1) two weak solutions of (6.6) we get

da (t) _ _
] t ) - ) 7t ) ) 68
(5500 T EOD =G0, (6:5)
and dis (1
i
0 (t = 0, X, t 6.9
(%) g FAEO= 00, (6.9
subtructing the identity (6.9) from (6.8) we get for v =14 — @
1d,,. . o o -
Sd (6 — @) tll gyo gy +all(@—a) ]l = f (& W) proq) = f (W) g (6.10)

integrating (6.10) and putting u () = 4 — @ we have

lu (1) B3 0,1 + 20 Jy llu (P> dr QIOZ (f (ryi) = f(7,0) ,u) gy g,1) AT,
2 [y Ilf (@) = f (7 @) | 30,1y ~ 1w (Tl 30,1 97 (6.11)
2M [y llu (7)1 By 0.1) dT-

From where Gronwalls lemma yields H“(T)Hng(o 1) = 0 = @ = 4 ; So, we have the uniqueness of the
solution. O

IAIA

Proposition 6.3. The sequence (uy,),, totally converges to u in L? (0,T;V).

Proof. The key point is to reason by absurdity, so we suppose that (u,,) is not converging to u in L? (0,T; V)
then
Je>0,3v € L2(0,T;V),3 (ug)e C (un), :

‘foT (ue (t) —u(t),v(t))dt| > e, Vo, (6.12)

but (u§)§ is bounded in L? (0,7;V), consequently we can construct a subsequence (ugj) which weakly
converges in L? (0, T; V) towards a certain element w € L? (0,T;V), and while reasoning exactly as for the
function u from the theorem (6.1) , we prove that u is another solution for the problem (3.1) — (3.3), which
implies,taking into account uniqueness in the problem in question, that w is none other than u, so

T
lim (ue (t) —u(t),v(t))dt =0,
f—)OO 0
which is in contradiction with (6.12), thus

U, — u in L (0,T; V)
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Theorem 6.4. Let be u°, u® € V, f, f. € L? (O,T; B3 (0, 1)), and let u and uy be the corresponding weak
solutions satisfying assumptions (Hy) — (Hs) , if the following inequality

1 (t0) = fu ()l pyony < alt) + bl —wllgyny, V€ LVo,we Y, (6.13)

holds for some continuous nonnegative a (t) € I and some constant b > 0 we have the estimate

t
2
lu = | By 0,1y < (HUO — %5101 +/0 a® (1) dT> el L, (6.14)
Proof. We take the difference identities (6.8) — (6.9) corresponding to u, u, and f, f«

Ju = el + 20 o lu () = e (DI dr
< fJu® - UQHB;(OJ)
+2 [ (1,u) — fu (T, U*)HB;(OJ) lu(7) = us (7')H321(0,1) dr,

(6.15)

applying the elementary algebraic inequality
208 <o+ 8%  Va,fER,
to the second term in the right hand side, we derive

= wall By 0,0y + 20 Jo lu (7) = e (7)) dr
2
< [Ju® = w5100y , (6.16)
t 1
+ Jya® () dr+ (2b+1) fg u(r) = us (7| By 0,0 d7

from which the estimate (6.14) follows by means of Gromwell’s lemma. O
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