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Abstract

In this paper, a three-step implicit iteration process with errors is introduced and we prove strong convergence
theorem of the new iterative scheme with some mild conditions on the real sequences to a common fixed
point of finite family of asymptotically ¢-demicontractive mappings defined on a closed convex subset of a
Banach space. The new iterative scheme includes several well known explicit and implicit iterative schemes.
The results in this paper generalize several strong convergence results in the literature.
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1. Introduction

Let E be a real Banach space and J : E — 2" denote the normalized duality mapping defined by

JO)={f € E* (¢, f*) = IKI> = | I}, V¢ € E, (1.1)

where E* denotes the dual space of E and (-,-) denotes the generalized duality pairing of E' and E*. In the
sequel, we shall use j to denote the single-valued duality mapping and F'(R) denotes the set of fixed points
of mapping R, ie., F(R)={( € E: R{ =(}.

Definition 1.1. Let K be a nonempty subset of real Banach space F. A mapping R : K — K is
said to be:

e L-Lipschitzian if there exists a constant L > 0 such that

|RC — Rull < L[|¢ — pl, (1.2)
for all (,u € K. R is said to be a contraction if L € [0,1) and T is said to be nonezpansive if L = 1;
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uniformly L-Lipschitzian if there exists a constant L > 0 such that

IR"C — R"ul| < L|I¢ — pll, V¢, p € K and n > 1; (1.3)

asymptotically nonexpansive if there exists a sequence {h,} C [1,00) with lim h, = 1 such that
n—o0

[R"C— R"u|| < hnl|C — pll, V€ Kyn>1; (1.4)

k-strictly pseudocontractive if for all ¢, u € K, there exist a constant k € (0,1] and j(¢ —u) € J(¢ — )
such that

(R¢ = Ry, (¢ — ) < 1€ = pll? = ElI¢ — = (RC = Rp) . (1.5)
If I denotes the identity mapping, then (1.5) can be written as
(I=R)C—(I—R)u,5(C— ) > klI(I = R)C — (I = R)pl%; (1.6)

demicontractive if F(R) # () and for each ( € K, p € F(R), there exist a constant k € (0,1] and
j(¢ —p) € J(¢ — p) such that

(¢ = R(,j(¢C—p) > K|¢ — RC|1”. (1.7)

It easy to see that every k-strictly pseudocontractive map with a nonempty fixed point set is a demi-
contractive map (see Hick and Cubicek [20]);

asymptotically k-strictly pseudocontractive if there exists a constant k € [0,1) and a sequence {hy} C
[1,00) with nh_)ngo hn =1 such that

(T =BG~ (T = B, §C— ) > 5 (=R~ R — (T = Rl

1

—5(’%31 = D¢ = ul, (1.8)

forall {,p € K and n > 1;

asymptotically demicontractive if there exists a sequence {h,} C [1,00) with lim h, =1, if F(R) # 0
n—oo

and there exists a constant k € [0,1) and j(¢ — p) € J({ — p) such that

(C-RBCHC—p) = 50— RIC— R

5 = Dli¢ ~pI?, (19)

forall (,u € K,p € F(R) and n > 1.

The class of asymptotically k-strictly pseudocontractive mappings and asymptotically demicontrac-
tive mappings were introduced in Hilbert space by Qihou [41]. By virtue of the normalized duality
mapping, Osilike [36], first extended the concept of k-strictly asymptotically pseudocontractive and
asymptotically demicontractive mappings from Hilbert spaces to general Banach spaces. Observe that
every k-strictly asymptotically pseudocontractive mapping with a nonempty fixed point set is asymp-
totically demicontractive mapping. It is proved in [40] that the class of k—strictly asymptotically
pseudocontractive mappings and the class of k-strictly pseudocontractive mapping are independent.

We now give an example of a mapping which is an asymptotically demicontractive mapping, but
not a demicontractive mapping.

Example 1.2 [41]. Let E = R with the absolute value norm and K = [0, 1]. Define R : K — K by

RC=(1-(3)% YCeK. (1.10)
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First, we shall show that R is asymptotically demicontractive mapping for all k& € (0,1). It is clear
that % is fixed point of R. But RoR = I and R is monotonically decreasing, it follows that

|R" = p|* < h2|¢ — p* + kIC — R™CJ, (1.11)
where h,, € [1,00) and k € (0,1). Hence, R is asymptotically demicontractive mapping for all k € (0,1).
Next, we shall show that 7" is not a demicontractive mapping for all k € (0,1). Let p = £ and { = &,

then
|R¢ — p> > [¢ — p|* + k|¢ — R*¢/?, (1.12)

for infinitely many k € (0,1). Therefore, R is not a demicontractive mapping for k € (0,1). Hence, the
class of demicontractive mappings is a proper subclass of the class of asymptotically demicontractive
mapping.

e asymptotically ¢-demicontractive if there exists a sequence {h,} C [1,00) with nh_}I?go hp,=1, F(R)#0
and a strictly increasing continuous function ¢ : [0,00) — [0,00) with ¢(0) = 0 and there exists
j(¢ —p) € J(¢ — p) such that

(= R3¢ —p) = 60l — Rl — 2 (2~ Dic — I (113)

for all ( € K, p € F(R) and n > 1. The class asymptotically ¢-demicontractive mappings was
first introduced by Osilike and Isiogugu [39]. It is proved in [39] that the class of asymptotically
demicontractive mapping is a proper subclass of the class of asymptotically ¢-demicontractive mapping.

The convergence of iterative scheme to the fixed of these operators have been studied by several authors
(see for example, [23, 24, 25, 26, 27, 28, 30, 31, 36, 38, 39, 41]).

In [39], Osilike and Isiogugu proved the convergence of the modified averaging iteration process of Mann [33]
to the fixed points of asymptotically ¢-demicontractive mappings. In particular, they proved the following:

Theorem 1.1 ([39], p. 65). Let E be real Banach space and K a nonempty closed convex subset of
E. Let R: K — K be a completely continuous uniformly L-Lipschitzian asymptotically ¢-demicontractive
mapping with a sequence {hn}2; C [1,00), such that Y (h2 — 1) < co. Let a,, be a real sequence satisfying
(i) 0 < a, <1 (i) > a, = oo (iii) 3 a2 < 0o

Then the sequence {(,}52, generated from arbitrary ¢ € K by the modified averaging Mann iteration process

Cnt1 = (1 - an)Cn + aanCna n>1 (114)

converges strongly to a common fixed point of of R.

Fixed point theory provides a suitable framework to investigate various nonlinear phenomena arising in
applied sciences including complex graphics, geometry, biology and physics (see for example, [5], [22], [42]
and [48]). Complex graphical shapes such as fractals, were discovered as fixed points as contain in [5].
A wide range of problems of applied sciences and engineering are usually formulated as functional equa-
tions. Such equations can be written in the form of fixed point equations. Operator equations representing
phenomena occurring in different fields, such as steady state temperature, distribution, chemical reactions,
neutron transport theory, economy theories and epidemics, often require appropriate and adequate solu-
tions. Thus, the aim of finding solution to these equations is to locate the fixed point and approximate it
value. However, once we ensure the existence of fixed point of some mapping, then it is always desirable
to develop such methods which can efficiently be used to approximate that fixed point. Iterative processes
are one of the fundamental tools that can be used to locate a fixed point. In the last few decades, various
authors have introduced numerous iterative schemes which have been utilized widely to approximate the
fixed point of operators. The celebrated Banach contraction theorem [4] which is one of the most widely
and extensively utilized result uses the Picard iteration process for locating the fixed point. Owing to the
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importance of iteration processes, many new iteration schemes have been constructed in the last few decades
to approximate fixed points of certain mappings in different spaces. Some well know iterative schemes are
Mann [33], Ishikawa [29], Noor [34], Argawal et al. [3], Normal S-iteration [43], Abass and Nazir [2] and so on.

In the past few decades fixed point theory has been kept a watchful eye as many authors tend to use
fixed point approach to solve several problems in applied science as enumerated earlier on.

Recently, Abbas et al. [1] presented an application of fixed point iterative precess in generation of fractals
namely Julia and Mandelbrot sets for the complex polynomials of the form R(¢{) = (" +m( +r, m,r € C
and n > 2. Fractals represent the phenomena of expanding or unfolding symmetries which exhibit similar
patterns displayed at every scale. They proved some escape time results for generation of Julia and Mandel-
brot sets using a Picard Ishikawa type iterative process. A visualization of the Julia and Mandelbrot set for
certain complex polynomials and their graphical behavior was examined. Further, they discussed the effects
of parameters on the color variation and shape of fractal. Let C be a complex space and R¢c : C — C be
a complex polynomial with complex coefficients. Precisely, Abbas et al [1] considered the following Picard
Ishikawa type iterative process in achieving their results.

¢ €C,

G = (1= a)pn + aRpin,

pn = Rcyn, (1.15)
n = Rcyntn,

tn = (1 —a' )G + @' Ry,

where n =0,1,2,... and a,d’ € (0,1].

Interestingly, De la Sen [14] considered a modified Ishikawa iteration scheme and illustrated that the pa-
rameterizing sequences might be vectors of distinct components and admitted that auxiliary self-mapping
which supports the iterative scheme is asymptotically demicontractive.

Let H and G be nonempty subsets of a normed linear space X. A mapping R: HUG — H UG is said to be
a noncyclic if R(H) C H,R(G) C G and ||R¢ — Ru|| < ||¢ — pl| for all (¢, ) € H x G. A best proximity pair
for such mapping R is a point (q1,q2) € H x G such that ¢1 = Rqi1, g2 = Rq2 and d(q1, q2) = dist(H, G).

With the beauty of fixed point theory, Gabeleh [15] introduced a geometric notion of proximal Opial’s
condition on a nonempty, closed and convex pair of subsets of strictly convex Banach spaces. By using
their new geometric notion, they studied the strong and weak convergence of the Ishikawa iterative scheme
for noncyclic relatively nonexpansive mappings in uniformly convex Banach spaces. Furthermore, they es-
tablished a best proximity pair theorem for noncyclic contraction type mappings in the setting of strictly
convex Banach spaces. Inarguably, fixed point theory has helped in solving numerous problems in applied
sciences and Engineering.

In 1974, Ishikawa [29] introduced an iteration process {(,} defined by

CO € K7
Cn-i—l = (]— - an)Cn + an Ry, Vn > 1, (116)
Hn = (1 - a;)fn + a;zRCn

where {a,} and {a],} are sequences in [0,1]. This iteration process reduces to Mann iteration [33] if a], = 0
for all n > 1 as follows:
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(o € K,
{ Corr = (1= )G + anRCr, 2T (1.17)

where {a,} is a sequence in [0,1].

In 1991, Schu [44] introduced the following Mann-type iterative process for an asymptotically nonexpansive
in Hilbert spaces

€ K,
{ Cat1 = (1 = an)Gn + anR"Cp, vnz 1, (1.18)

where {a,} is a sequences in [0,1].

In 2001, Xu and Ori [54] introduced the following implicit iteration process for finite family of nonexpansive
self-mapping in Hilbert spaces.

G € K,
{ Cn = O5nCn71 + (1 - an)RnCnv Vn = 17 (1‘19)

where {a;, } is a sequence in [0,1] and R,, = R,,(jmoav)- They proved in [54] that the sequence {(,} converges
to a common fixed point of {R,}_;.

Later on, Osilike and Akuchu [37] and Chen et al. [11] extended the iteration process (1.19) to a finite
family of asymptotically pseudocontractive mapping and a finite family of continuous pseudocontractive
self-mapping, respectively.

In 2003, Sun [50] modified the implicit iteration of Xu and Ori [54] and applied the modified averaging
iteration process for the approximation of fixed points of asymptotically quasi-nonexpansive mappings. Sun
introduced the following implicit iteration process for common fixed points of a finite family in Banach
spaces:

€ K, Vn > 1 1.20
Cn=anCp_1+ (1 — an)Rf((:))Cm (L) (1.20)

where {a,} is a sequence in [0,1], n = (k—1)N +i,i=n(i) € [ = {1,2,...,N}.

In 2006, Su and Li [49] introduced the following implicit Ishikwa-type iteration scheme and called it com-
posite implicit iteration process and applied the iteration process for the approximation of common fixed
point of a finite family of strictly pseudocontractive maps:

CO € K’

Cn = anCn-1+ (1 —an)Rpttn, VYn>1, (1.21)

Hn = O‘%Cn—l + (1 - agm)RnCn

where {a,,} and {a;,} are sequences in [0,1] and Ry, = Ry, (moa) N-

In 2011, Igbokwe and Ini [25] modified and improved the composite implicit iteration process of Su and
Li [49] for the approximation of common fixed point of finite family of k—strictly asymptotically pseudocon-
tractive mappings in Banach spaces. Precisely, they considered the following modified averaging composite
iteration process:
G € K,
2
Cn = anGp-1+ (1 — an)Ri((:)),U/na Vn > 1, (1.22)
k
pn = Gt + (1 — O‘In)Ri((,?))Cn
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where {a,} and {a/,} are sequences in [0,1] and n = (k — 1)N +4, i =i(n) € {1,2,...., N}, k = k(n) > 1is
some positive integers and k(n) — oo as n — oo.

Igbokwe and Jim [26]-[27] extended the result of Igbokwe and Ini [25] from the class of finite family
of k-strictly asymptotically pseudocontractive mappings to the more general class of asymptotically ¢-
demicontractive mappings in Hilbert and Banach spaces, respectively.

In 2007, Gu [18] introduced a composite implicit iteration process with errors for a finite family of strictly
pseudocontractive mappings in Banach spaces as follows:

G € K,
Cn=(1—an —bn)Cn-1+ anRypin + bpuy, Vn > 1, (1.23)
= (1 — aln - biz)Cn + a;LRnCn + b/nvn

where Ry, = Ry(modn), 1an}, {0n}, {ay,}, {0),}, are four real sequences in [0, 1], {u,} and {v,} are bounded
sequences in K.

In 2007, Thahur [52] proposed the following composite implicit iteration process for a finite family of
asymptotically nonexpansive mappings as follows:

CO € K7

k

Cn = (1= an)Cn-1+ anRi((n)),um Vn > 1, (1.24)

pn = (1= a)Go + @, R C
where {a,} and {al,} are sequences in [0,1] and n = (k — 1)N +4, i = i(n) € {1,2,...., N}, k =k(n) > 1is
some positive integers and k(n) — oo as n — oo.

In Yang [56] and Cianciaruso [12], they considered a two-step implicit iteration process with errors for
a finite family of asymptotically nonexpansive and asymptotically demicontractive mappings defined as
follows:

G € K,
Cn=(1—an—bp)Cn-1+ aan((,?))Nn + bnun, Vn > 1, (1.25)
= (1 —ap, — b,)Cn + a;zRf((:))gn + by, vn,

where{ay}, {bn}, {a,}, {b),}, are four real sequences in [0, 1], {u,} and {v,} are bounded sequences in K
andn = (k—1)N+i,i =1i(n) € {1,2,..., N}, k = k(n) > 1 is some positive integers and k(n) — oo asn — oo.

In 2010, Gu [19] introduced another composite implicit iteration process with errors for a finite family
of strictly pseudocontractive mappings in Banach spaces as follows:

CO € K’
Cn = (1 — Qan — bn)Cn—l + an Ry pin, + b, Vn > 1, (1-26)
pn = (1 —ag, — b3,)Cn1 + ap, Ry + b, vp

where Ry, = Ry (modn)s {n}s {0}, {a,,}, {8),}, are four real sequences in [0, 1], {u,} and {v,} are bounded
sequences in K.

In 2012, Jim [30] extended the results of Gu [19] from the class of strictly pseudocontractive mappings
to the more general class of ¢-demicontractive mappings in Hilbert spaces.
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Furthermore, Jim et al. [31] improved and modified the composite implicit iteration process of Gu [19]
for a finite family of asymptotically ¢-demicontractive maps in Banach spaces as follows:

CO € K7

C=1=an—by)Cr—1+ aan((:))Mn + bptn, Vn > 1, (1.27)

k

pn = (1= aly = ¥,)Gn1 + af By G + bl
where {a,}, {bn}, {a,}, {8}, are four real sequences in [0, 1], {u,} and {v,} are bounded sequences in K
andn = (k—1)N+i,i =1i(n) € {1,2,..., N}, k = k(n) > 1is some positive integers and k(n) — co asn — oo.

Noor et al. [34] introduced and studied the following three-step iteration process for solving non-linear
operator equations in real Banach spaces:

G € K,

Cnt1 = (1 - O‘n)cn + an Ry,
= (1 = ap,)Cn + ag, Ry,

Yo = (1 = ay)Gn + an RG,

Vn > 1, (1.28)

(1.29)

where {a,}, {a),} and {a!'} are sequences in [0,1].

Since then, Noor iteration scheme has been applied to study the strong and weak convergence of several
mappings (see, e.g., [13], [51] [55]). It was proved by Bnouhachem et al. [6] that three-step method performs
better than two-step and one-step methods for solving variational inequalities. Moreover, three-step schemes
are natural generalizations of the splitting methods to solve partial differential equations, (see [45], [47], [51]).

On the other hand, Glowinski and Le-Tallec [16] used a three-step iterative method to solve elasto-viscoplasticity,
liquid crystal and eigenvalue problems. They also established that three-step iterative scheme performs bet-
ter than one-step (Mann) and two-step (Ishikawa) iterative schemes. Haubruge et al. [21] studied the
convergence analysis of the three-step iterative processes of Glowinski and Le-Tallec [16] and used the three-
step iteration to obtain some new splitting type algorithms for solving variational inequalities, separable
convex programming and minimization of a sum of convex functions. They also proved that three-step
iteration also lead to highly parallelized algorithms under certain conditions. Hence, three-step iterative
scheme play an important role in solving various problems in pure and applied sciences.

Although, implicit methods are more complex to programme and require more computational effort in
each iteration or solution step, they are used because many physical problems arising in practice are stiff,
for which the use of explicit method requires small time steps to keep the errors in the result bounded.
For example, in numerical stability, which has to do with behaviour of the solution as the time-step is
increased, if the solution remains well behaved for arbitrary large values of time step, the method is said to
be unconditionally stable. This situation never occurs with explicit methods which are always conditionally
stable. Therefore, for stiff problems, to achieve given accuracy, it takes much less computational time to use
an implicit method with larger time steps. Implicit iterative schemes have been studied recently by several
authors (see for example, [11] [37], [50], [54] and the references there in).

Recently, Okeke and Olaleru [32] introduced the following modified three-step iterative scheme with er-
rors for approximation of the unique common fixed point of a family of strongly pseudocontractive maps:

G € K,

Cn—i—l = (1 — Op — /Bn - en)(n + OénR,U'n + /BnR’Yn + enplp,
Hn = (1 — ap — by — e;L)Cn + anS’Yn + bnSCn + e;ﬂjn,
Y= (1—=cn— €N+ cnHGy + €lwy,

Vn > 1, (1.30)
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where {an}, {Bn}, {en}, {an}, {bn}, {€),}, {cn}, {€} are real sequences in [0,1], {u,}, {v,} and {w,} are
bounded sequences in K.

Motivated and inspired by the above results, we introduce a new modified three-step composite implicit
iteration process with errors for approximating common fixed points of a finite family of N-asymptotically
¢-demicontractive mappings in Banach spaces as follows:

CO € K7

n = — Qp — Op — Cp)Cn—1 + An it -\ iy + Op LT, ¥ Yp + Cplp,
G=(1 b ¢ R i+ b Ry
pn = (1= aly = b, = &} )Cn1 + @ Ry + 0, Ry G + o,
Yo = (1 — a% - blri)(n =+ a//Rk(n)Cn + b%wn

n="(n)

Vn > 1, (1.31)

where {a,}, {bn}, {cn}, {a,}, {b)}, {c,}, {al}, {b!l} are real sequences in [0, 1] satisfying a,, + b, + ¢, < 1,
al, +b, +c, <1landa +0b! <1, {u,}, {v,} and {w,} are bounded sequences in K and n = (k —1)N + 1,
i=1i(n) €{1,2,....,N}, k=k(n) > 1 is some positive integers and k(n) — oo as n — oo.

The iteration process (1.31) reduces to:

(1.17) when b, = ¢, = a,, = b, =, =al! =0//=0, R* =R, N = 1.

1.18) when b, = ¢, =a, =bl, =, =al =b/=0, N =1

1.19) when a,, = ¢, = a,, = b, =, =al =b!=0, R* =R, (1 —by,) = an

1.20) when a, = ¢, = a,, = b, =, =al! =0//=0, (1 -b,) = ay,

1.21) when b, = ¢, =b), =¢, =a =b/=0,1—a, =ay,, 1 —a, = o), R" = R.
1.22) when b, = ¢, =0, =¢, =a, =b'=0,1—ap, = a,, 1 —al, = a),.

n n ?

1.24 whenan:cn:a;:bgz%zbﬁzo-

1.25) when a, = a}, = b, = ¢, =
1.26) when b, = b/, =a, =b'! =0, R* = R, N = 1.

n n

1.27) when b, = b}, = al, = bl = 0.

n n

(1.18)
(1.19)
(1.20)
(1.21)
(1.22)
(1.23) when a,, = a}, = b}, = ¢,,=0, R* = R, N = 1.
(1.24)
(1.25)
(1.26)
(1.27)

Hence, the new iteration process (1.31) properly includes the iteration processes (1.17)-(1.26).

The purpose of this paper is to use a simple and quite different method, to study the strong con-
vergence of our new implicit iterative sequence {(,} defined by (1.31) to a common fixed points of
finite family of asymptotically ¢-hemicontractive mappings in a real Banach space. Our results extend
and improve some recent results in Su and Li [49], Sun [50], Xu and Ori [54], Osilike and Isiogugu
[39], Schu [44], Yang [56], Cianciaruso [12], Ighokwe and Ini [25], Igbokwe and Jim [26]-[27], Gu [18],
Thahur [52], Jim [30] and Jim et al. [31].

2. Preliminaries

In order to prove our main results, we also need the following lemmas.
Lemma 2.1 (see [7]). Let J : E — 2F" be the normalized duality mapping. Then for any ¢, u € E, one has

1S + pll® < NICIP + 2, 5 (C + ), Vi(C+ p) € T+ p).

Lemma 2.2 (see [53]). Let p,, wy, and w, be a nonnegative sequences satisfying
Pnt1 < (1 - Hn)pn + wn + @p

where 6,, € [0, 1], anl 0, = 00, wy, = 0(0,) and Zn21 wy < 00. Then

lim p, = 0.

n—oo
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3. Main Resuls

Theorem 3.1. Let K be a nonempty closed convexr subset of a real Banach space E. Let N > 1 be a
positive integer and I = {1,2,3,...,N}. Let R; : K — K be a finite family asymptotically ¢-demicontractive
mappings with sequence {\in} C [1,00), where Njp, = 1 as n — oo, for each i € 1. Furthermore, let R;(K)
be bounded and R; be uniformly continuous for each i € I. Assume that F = (X, F(R;) # 0. Let {uy},
{vn}, {wn} be bounded in K and {an}, {bn}, {cn}, {al}, {b),}, {c,}, {al} and {b]} be sequences in [0,1]
such that an + by, + ¢, < 1, al, + b, + ¢, <1 and al! + b <1, for each n > 1. Let {(,} be a sequence
generated in (1.31). Assume that the following conditions are satisfied:

0 5

(ﬁ) nil(an + bn) = 003

(an+by,) =0= lim ¢, = lim a}, = lim ¥, = lim ¢, = lim a] = lim b;
n—oo n—o0 n—oo n—oo n—o0 n—oo

o0
(iii) > en < o0
n=1

Then the sequence {(,} converges strongly to a point in F.

Proof. Fixing p € F. Since R; has a bounded range, we let
k(n) k(n)
My = [0 = pll +sup [[R;,y tin — pl| + sup || R}, Yym — P
169 = ol + sup L8 e = pll + sup | R~
k
+sup || i) G — pl| + sup [|un, — pl| + sup [|v, — p]
n>1 n>1 n>1

+sup e, — p]. (3.1)
n>1

Obviously, My < co. It is clear that ||(p—p|| < M;. Let ||(—1 —p|| < M;. Next we prove that ||, —pl|| < M;.

Using (1.31) we obtain that

HCn - pH = H(l —ap — by — Cn)Cn—l + aan((,:L))Mn + ban((:))'Yn + cpup — pH
= (A —an—by —cn)(Cn-1—p) + an(Rf((:))Mn —p)

+bn (Rig) 4 — ) + cnlun = p)|

IN

k
(1= an = by — ca)l[Gn1 = pll + anl R 10 = p]
k
Hbul| Ry = ol + cnllun —
(1 —ap — by — Cn)Ml + an My + b, My + ¢, M,
M.

Hence, the sequence {||{, — pl||} is bounded. Let My = sup ||(, — p||-
n>1
Denote

M = My + M,. Clearly M < oo. (3.2)
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Using (1.31) and Lemma 2.1 we obtain

[Go = PI? = 1I(1 = an = bn = €)1 + @R o + bRy + i, — |2
< (1= an = by = ) llGu-1 =PI + 2an(RL( 1 — p)
o (R = ) + et = 1), 5(Cn — )
= (1= an— by = )?llGo1 = P + 20 R i — 9, 5(Go = 1)
+2b0 (R = P2 (Gn = P)) + 260 {un — . (o = p))
= (1—an—by —cn>2u<n 1=l
+2a, (R, (( )),U'n, - R Cn, [(Cn — D))
+2an Ry Cn — p,J(Cn - 1))
+2bu (R Y = R s 1 (Gn = )
+2b5 (RE Gy = . 3G — D))
+2¢n(un — p, j(Cn — p))
= (I—an—by —cn>2||cn 1=l
+2an Ry i — Ri o (@ — p))
+2bn Ry = B G 3 (Gu = )
=2 (Go = Ry G (Cn = p))
~2bn{Gn "“‘)cn, (Co = p))
+21(Gn =, (Gn — D))
+2bn (G — <¢n p))
+2¢0 (ttn =, §(Cu = D))- (33)

Since each R; : K — K, i€ I ={1,2,...N} is an asymptotically ¢-demicontractive mapping with sequence
{Ain} C [1,00), where \j, = 1 as n — oo, for each ¢ € I. Then for all ( € K and p € F(R), there exists
j(¢ —p) € J(¢ — p) such that

n , n 1 .
(G = Ry 63 (G = 9)) = 6illlGn = BRI Gull) = 5 (OF = DIIGa = plI*, Vi€ 1. (34)
Let h, = max{)\;, : i € I} and ¢(p) = max{¢;(p) : ¢ € I}, for each p > 0, then

n . n 1 .
(G = Ry 603 (6o = 9)) = 8(11Gn = BRI Gull) = 5 () = DIIGa = pl*, Vi € 1. (3.5)
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substituting (3.5) into (3.3), we obtain
Ic =2l < (1= an— by~ cn)?[Go1 — 1l (3.6)

+2a || Ry un—R“" GallllGn — pl

+2by ||R’“S;3 T — Ry cnuucn—pn

~2an{([[Gn — Rigy Cull) — (W )¢ — plI*}
~2b, {6 G — Ry Gall) = ;him ~1)lI¢n — plI}
+2a3Gn — pII? + 2601 — I + 2enllin — pllI G — pl

< (1 —ap—bp—cn)?||Ca1 — P> + 2M (ant? + by6%)
~2(an + bp)d([[Gn — Ry Gall) + (an + ba) (B ) = DIGn — w1
+2(an + bn) (|G — Pl + 2cnllun — plll|1Cn —pH
< (1= an =21 — Pl = 2(an + )16 — Ry Call)
H(an + ba) (B ) — 1) + 2(an + )] (|G — pII
+2¢, M? + 2M (a,, + by) max{v?, 6"}, (3.7)
where
vio = IR~ RiG) Gl
O = R = RICall

Using (1.31), we have

”Nn - CnH

IN

IN

From the condition

3l Item =

Cn

||/'Ln - Cnfl + Cnfl - Cn”
||/'Ln - <n71|| + ||Cn71 - Cn”
11 = af, = b, = €)1 + A R
+b/ k(n Cn + c, nUn — CanH
+HCn 1 — [(1 — Qp — b - Cn)Cn—l
+an R, (( ))Nn + bR, ((:))’Yn + Cnun] H
Han( z((n Yn — Cn 1) + b/ ( z(n) Cn - Cn—l) + C;L(Un - Cn—l)”
"’”an(Cnfl - Rl((n)):un) + bn(Cnfl - Rf((:))'}/n) + Cn(Cnfl - Un)”
k(n
an (1R ¥ = Il + [Gom1 = pI) + B (IR G = Pl + [[Gn1 = p)
k(n

& ([[vm = Il + G-t = plI) + an(| BE ) s = 2l + [IGa1 = pI)
+on (IR v = pll + 161 = pI) + enlllun — Il + a1 — o)
2a,, M + 2b/, M + 2¢/, M + 2a, M + 2b, M + 2¢, M

2M (a,, + b, + b + an + by + cp). (3.8)
(i) and (3.8), we obtain
=0, (3.9)

and the uniform continuity of R; leads to

k(n)

Tim | R i — Rl = 0,
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thus, we have
nlgngou =0. (3.10)
Again from (1.31) we have
In = Gall = (1= a" = b")Gn + af R Go + Hywn — Gall
= Hag( ,(n C —Cn) + b:;(wn — G|l
= Jap(REY 20 —p+p— o) + bis(wn —p+p— G|
< a (IR G = pll + 160 — pII) + by (llwn — pll + 160 = pI)
< an(M+M)+b/(M+ M)
= 2M(a) +0)). (3.11)
From the condition (i) and (3.11), we obtain
nlggo 7 — Call = 0, (3.12)
and the uniform continuity of R; leads to
. k(n k(n
Jim IR — B Gl =0, (3.13)
thus, we have
nh_}rrgoé =0. (3.14)
From (3.7) we obtain
1—a, —by)?
2 < ( n = bn =
2(an + by) Q)
T~ [(an + b) (W) — 1)+ 2(an + 0] Ol = iy 2nll)
N 2c, M?
1—[(an+0 )(hi(n) — 1)+ 2(an + by)]
n 2M (a,, + by) max{v}, 68}
1_[(an+b)(h2() 1) +2(an + by)]
—2(an + bn) + (an +bn)? + (an + bn) (AZ () — 1) + 2(bn + by)
= |1+ [ —29||2
1—[(an+ bn)(h%(n) — 1)+ 2(an + by)]
N 2¢, M?
1—[(an +bn) (k2 — 1) + 2(an + by)]
N 2M (a,, + b,) max{vi, 6}
1- [(an +0b )(hi( y T ) + 2(an + bn)]

1—[(an+0 )(hi(n) —1) + 2(an + bn>]¢(”x itm 7l
Since a;, + by, — 0 and hy(,) — 1 then there exists a natural number ng such that

1 —[(an +bp) (k2 = 1) 4+ 2(an + bp)] > = Vn > ng

N |
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From (3.15), we have

1Gn — pH2 < [T+2{-2(an + by) + (an + bn)2 + (an + )(h2( y T 1) + 2(an + bn)}]
X||Ga1 — pl|* + 4M (ap + by) max{v}, 8%} + 4e, M?
~2(an + bn)o([|Gn — Rl Gall)
= [1—2(an + bp)]l|Gn—1 _pH2 +2[(an + bn)2 + (an + bn)hz(n)]”gn—l —PH2
+4M (ap, + by) max{v’, 6.} + dc, M>

—~2(an + bn)d([1Gn — Ry Gall) (3.16)

Since ¢(q) > 0 for all ¢ > 0, then for all n > ny, it follows from (3.16) that

1¢n —p||2 < [1=2(an + bp)]IGn—1 _pH2 +2[(an + bn)2 + (an +b )h2(n)] M?
+4M (ap, + by) max{v’, 6.} + dc, M>

= [1—2(an +b)lll¢a-1 = 21 + 2(an + ba){[(an + bn) + hi,) | M?
+2max{v’, 6.} + 4e, M2

n»-n

For all n > 1, put

pn = |[G—1—pl,

0 2(an, + by),

wp = 2(ap+bn){[(an + by) —l—hz(n)] M?
+2max{v’, 5. }]} and

n» - n
@, = 4c,M?

then by Lemma 2.2, we obtain that
lim |[¢, —p| =0. (3.17)
n—oo

This completes the prove of Theorem 3.1.

Theorem 3.1 extends, generalizes and and improves the corresponding results of Su and Li [49], Sun [50],
Xu and Ori [54], Osilike and Isiogugu [39], Schu [44], Yang [56], Cianciaruso [12], Igbokwe and Ini [25],
Igbokwe and Jim [26]-[27], Gu [18], Thahur [52], Jim [30] and Jim et al. [31] and several others in the
existing literatures.

Using the method of proof in Theorem 3.1, we have the following results.

Corollary 3.2. Let K be a nonempty closed convex subset of a real Banach space E. Let N > 1 be a posi-
tive integer and I = {1,2,3,...,N}. Let R; : K — K be a finite family of asymptotically ¢-demicontractive
mappings with sequence {\in} C [1,00), where X\ip, = 1 as n — oo, for each i € I. Furthermore, let R;(K)
be bounded and R; be uniformly continuous for each i € I. Assume that F = ﬂf\il F(R;) # 0. Let {u,},
{vn} be bounded in K and {an}, {cn}, {al}, {c,} be sequences in [0,1] such that a, +c, <1, al, +c, <1,
for each n > 1. Assume that the following conditions are satisfied:

(i) lim a, = hm ¢p = lim @, = lim ¢, =0
n—oo — 00 n—oo n—oo

(ii) Z ap = O0;
n=1
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(iii) § cp < 00.

n=1

Let {(,} be a sequence generated by

CO € Ka
Cn=(1—=an—cn)Cp1+ aan((S))Mn + Cnln, Vn > 1. (3.18)
= (1= aly = )Gt + aly R o + v

Then the sequence {(,} converges strongly to a point in F
Proof. Take b, = b}, = a, =V =0 in Theorem 3.1.

Corollary 3.3. Let K be a nonempty closed convex subset of a real Banach space E. Let N > 1 be a posi-
tive integer and I = {1,2,3,...,N}. Let R; : K — K be a finite family of asymptotically ¢-demicontractive
mappings with sequence { Ay} C [1,00), where Njp, — 1 as n — oo, for each i € I. Furthermore, let R;(K)
be bounded and R; be uniformly continuous for each i € I. Assume that F = ﬂf\il F(R;) # 0. Let {a,} and
{al.} be sequences in [0,1], for each n > 1. Assume that the following conditions are satisfied:

(i) lim a, = lim a, =0
n—o0 n—oo
(i) > an =oc.
n=1
Let {¢,} be a sequence generated by
G € K,
k(n
pn = (1 —ap)Cn-1 + a%Ri((n))Cn

Then the sequence {(,} converges strongly to a point in F

Proof. Set ¢, = ¢, = 0 in Corollary 3.2

Corollary 3.4. Let K be a nonempty closed convex subset of a real Banach space E. Let N > 1 be a posi-
tive integer and I = {1,2,3,...., N}. Let R; : K — K be a finite family of asymptotically ¢-demicontractive
mappings with sequence {\in} C [1,00), where \jp, — 1 as n — oo, for each i € I. Furthermore, let R;(K)
be bounded and R; be uniformly continuous for each i € I. Assume that F = ﬂfil F(R;) # 0. Let {u,} be
bounded in K and {an}, {cn} be sequences in [0,1] such that a,, + ¢, < 1, for each n > 1. Assume that the
following conditions are satisfied:

(i) lim a, = lim ¢, =0
n—oo n—oo
.o w
(il) > ap, = oo
n=1
(o)
(iii) > en < o0.
n=1

Let {(,} be a sequence generated by

os vnz1 3.20
Go=(1—an—cp)Cn-1+ aan((:))Cn_1 + CcpUnp, n=4 (3.20)

Then the sequence {(,} converges strongly to a point in F
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Proof. Take a, = ¢/, = 0 in Corollary 3. 2

Corollary 3.5. Let K be a nonempty closed convex subset of a real Banach space E. Let N > 1 be a posi-
tive integer and I = {1,2,3,...., N}. Let R; : K — K be a finite family of asymptotically ¢-demicontractive
mappings with sequence {\in} C [1,00), where X\ip, — 1 as n — oo, for each i € I. Furthermore, let R;(K)
be bounded and R; be uniformly continuous for each i € I. Assume that F = (Y, F(R;) # 0. Let {a,} be
a sequences in [0,1], for each n > 1. Assume that the following conditions are satisfied:

(i) nh—>Holo an =0

(ii) i an = 0.
n=1

Let {¢,} be a sequence generated by

o€k, Vn > 1 3.21
Cn = (1 - an)Cnfl + aan((nn))Cnfh et ( ’ )

Then the sequence {(,} converges strongly to a point in F
Proof. Take ¢, = 0 in Corollary 3.4

Corollary 3.6. Let K be a nonempty closed convex subset of a real Banach space E. Let N > 1 be a posi-
tive integer and I = {1,2,3,...,N}. Let R; : K — K be a finite family of asymptotically ¢-demicontractive
mappings with sequence {\jp,} C [1,00), where Ny, — 1 asn — oo, for each i € I. Furthermore, let R;(K) be
bounded and R; be uniformly continuous for each i € I. Assume that F = ﬂfil F(R;) # 0. Let {uy,}, {wp}
be bounded in K and {b,}, {cn}, {al} and {b!} be sequences in [0,1] such that b, + ¢, < 1 and a), + b)) <1,
for each n > 1. Assume that the following conditions are satisfied:

(i) lim b, = lim ¢, = lim a = lim b = 0;

(ii) > by = oo
n=1

(iii) > ep < o0.
n=1

Let {¢,} be a sequence generated by

G € K,
Cn = (1= by = Ca)n 1 + buRig) o + Catin, ¥ > 1, (3.22)
Yo = (1= ) = )G+ LRI G + bawn

Then the sequence {(,} converges strongly to a point in F.

Proof. Take a, = a}, =b), = ¢,, = 0 in Theorem 3.1.
Corollary 3.7. Let K be a nonempty closed convex subset of a real Banach space E. Let N > 1 be a posi-
tive integer and I = {1,2,3,...., N}. Let R; : K — K be a finite family of asymptotically ¢-demicontractive
mappings with sequence {\in} C [1,00), where A\jp, — 1 as n — oo, for each i € I. Furthermore, let R;(K)
be bounded and R; be uniformly continuous for each i € I. Assume that F = ﬂf\il F(R;) # 0. Let {b,} and

{all} be sequences in [0,1], for each n > 1. Assume that the following conditions are satisfied:

(i) lim b, = lim a!! = 0;
n—oo n—oo

(i) > by = o0
n=1
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Let {¢,} be a sequence generated by
G € K,
k
Cn = (1 —bp)Cn—1 + ban((:))’Yn Vn > 1, (3.23)
Yo = (1 —ay)Cn + ang((j))Cn
Then the sequence {(,} converges strongly to a point in F.

Proof. Take ¢, = b =0 in Corollary 3.6.

Corollary 3.8. Let K be a nonempty closed convex subset of a real Banach space E. Let N > 1 be a posi-
tive integer and I = {1,2,3,...., N}. Let R; : K — K be a finite family of asymptotically ¢-demicontractive
mappings with sequence {\in} C [1,00), where N\ip, — 1 as n — oo, for each i € I. Furthermore, let R;(K)
be bounded and R; be uniformly continuous for each i € I. Assume that F = X, F(R;) # 0. Let {uy} be
bounded in K and {b,}, {cn} be sequences in [0,1] such that b, + ¢, < 1, for each n > 1. Assume that the
following conditions are satisfied:

(i) lim b, = lim ¢, = 0;
[o.¢]
(ii)) > by = oo
n=1
[o.¢]
(i) > ep < oo
n=1

Let {¢,} be a sequence generated by

ek, Vn > 1 3.24
Cn = (1 — by, — Cn)Cn—l + ban((:))Cn + cpp, e ( . )

Then the sequence {(,} converges strongly to a point in F.
Proof. Take a) =b!! =0 in Corollary 3.6.

Corollary 3.9. Let K be a nonempty closed convex subset of a real Banach space E. Let N > 1 be a posi-
tive integer and I = {1,2,3,...,N}. Let T; : K — K be a finite family of asymptotically ¢-demicontractive
mappings with sequence {\in} C [1,00), where A\jp, — 1 as n — oo, for each i € I. Furthermore, let R;(K)
be bounded and T; be uniformly continuous for each i € I. Assume that F = ﬂi\il F(R;) #0. Let {b,} be a
sequence in [0,1] for each n > 1. Assume that the following conditions are satisfied:

(i) lim b, = 0;
n—o0
(&)
(ii) > by = o0
n=1
Let {(,} be a sequence generated by

€ X, Vn > 1 3.25
Cn= (1= bp)Gur + bR G, T (3.25)

Then the sequence {(,} converges strongly to a point in F.
Proof. Set ¢,, = 0 in Corollary 3.8.

This is just to state but a few of the numerous results that can be obtained from Theorem 3.1.
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Remark 3.10.
If we drop the bounded range condition, it can be proved that Theorem 3.1 and the related Corollaries are
valid for the class of Lipschitz asymptotically ¢-demicontractive mappings.

Example 3.11. Let E be the real line with the usual norm |- | and K = [-1,1]. For N = 2, Define
Rl, Rz K — K by

Ri¢ = sin(,VCeK
Ro¢ = sin(—(),¥¢ € K.

Then the following are satisfied:

(i) Ry and Ry are quasi-nonexpansive mappings, it follows that R; and Ry are asymptotically quasi-

nonexpansive mappings with constant sequence {h,} = {1}. Hence, they are asymptotically ¢-
demicontractive mappings. Clearly, Ry and Rs have bounded ranges and are also uniformly continuous
on [-1,1].

(ii) Obviously, R1(0) = 0, R2(0) = 0, that is, 0 is the common fixed point of R; and Rj, that is,
F = F(Ri) (N F(Ry) = {0}.

Put

_ _ 1 _ 1 /N N A A 1 no__ 1
an—bn_n+2’6"_ﬁ’ an_bn_cn_2(n+1)’an_bn_n+1'

Observe that all the conditions of Theorem 3.1 are satisfied. Hence, Theorem 3.1 is applicable.

4. Conclusion

Our three-step implicit iteration process properly includes the iteration processes (1.17)-(1.26) and also
the class of asymptotically ¢-demicontractive mappings is more general than those mentioned the literature.
Hence, our result extends, generalizes and improves the corresponding results of Su and Li [49], Sun [50], Xu
and Ori [54], Osilike and Isiogugu [39], Schu [44], Yang [56], Cianciaruso [12], Igbokwe and Ini [25], Igbokwe
and Jim [26]-[27], Gu [18], Thahur [52], Jim [30] and Jim et al. [31].
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