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Abstract

In this paper, we introduce the concept of generalized uniformly L-Lipchizian mappings with constant u and
a strong convergence theorem for a pair of generalized uniformly L-Lipchizian mappings in convex modular
spaces. Our work generalizes and extends a good number of results in this area of research.
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1. Introduction and preliminaries

Nakano [10] initiated the theory of modular space in connection with the theory of order spaces and

this space was later generalized by Musielak and Orlicz [9]. This space generalizes the normed linear space.
By defining a norm, particular Banach spaces of functions can be considered. Metric fixed theory for these
Banach spaces of functions has been widely studied [3,5]. Many problems in fixed point theory for nonex-
pansive mappings can be formulated in modular spaces.
The purpose of this work is to improve and extend the work of Shih, Yeol and Jong and many other related
work in literature (see[1-13]). Throughout this work, we assume that X, is a modular space, X} is the
dual space of X,,K is a nonempty closed convex subset of X, and J : X, — 2%5 is the normalized duality
mapping defined by

J(x)={f € X} (z,f) = p(x)> = p(f)*, p(x) = p(f)}Vz € X,

where (.,.) denotes the duality pairing between X, and X . The single -valued normalized duality mapping
is denoted by j.

*Corresponding author
Email address: adewalekayode2@yahoo.com (A. O. Kayode)

Received 2020-04-12



A. O. Kayode, Commun. Nonlinear Anal. 2 (2020), 1-8 2

Let X be a modular space, K, a nonempty closed convex subset of X and T : K — K a mapping,
(i) T is said to be uniformly L-Lipchizian if there exists L > 0 such that for any z,y € K

p(T"x —T"y) = Lp(z — y)

for all n > 1 and generalized uniformly L-Lipchizian if

p(IT"x —T"y) = L(p(z —y) +u)

where u={a€Z:0<a<1} foralln>1;
(ii) T is said to be asymptotically nonexpansive if there exists a sequence {ky} in [0, 00) with &k, — 1
such that for any given z,y € K,

p(T"x —T"y) = knp(x — y),¥n > 1
(ili) T is said to be asymptotically pseudo-contractive if there exists a sequence {k,} in [0,00) with
kn, — 1 such that for any given z,y € K, there exists j(z,y) € J(z,y) such that

Remark 1. It is easy to see that if T' is asymptotically nonexpansive mapping, then 7T is uniformly L-
Lipchizian mapping, where L = Sup,>1k, and every asymptotically nonexpansive mapping is asymptotically
pseudo-contractive but the inverse is not true. The following definitions are already in literature.
Definition 1.1[6]. Let X be an arbitrary vector space over K (= R or C). A functional p : X — [0,00) is
called modular if:

(i) p(z) =0 if and only if z = 0.
(ii) plax) = p(z) for « € K with |a| =1 for all x € X.
(iii) p(ax+ By) = p(z) + p(y) if a, >0, a+ =1 for all z,y € X.

Definition 1.2[6]. Let X be an arbitrary vector space over K (= R or C). A functional p : X — [0,00) is
called convex modular if:

(i) p(x) =0 if and only if z = 0.
(ii) p(azx) = p(z) for a € K with |a| =1 for all z € X.
(iii) p(ax + By) = ap(x) + Bp(y) if a, 5 >0, a+ =1 for all z,y € X.

Definition 1.3[6]. Let X be an arbitrary vector space over K (= R or C). A functional p : X — [0,00) is
called s-convex modular if:

(i) p(z) =0 if and only if z = 0.
(ii) plax) = p(z) for € K with |a| =1 for all x € X.

(iii) p(ax + By) = a®p(x) + Bp(y) if a, 5 >0, a® 4+ 5° =1 with s € [0,1) for all z,y € X.
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Lemma 1.4. Let {6, },>0 be a nonnegative sequence which satisfies the following inequality
en—l—l S (1 - )\n)en + /Bn7 n Z 07

where A, € (0,1), Y07 Ay =00, B = 0(\n), then limy 006y, =0

Lemma 1.5. Let X, be a modular space and J : X, — 2%5 be the nomalized duality mapping, then for
any T,y € X,

p(x+y)* < p(x)® +2(y,j(z +y)), Vi(z +y) € J(z +y)

Lemma 1.6. Let {a,} and {b,} be two nonnegative real sequences satisfying the following conditions:

Ont1 < (1 + )\n)an + bn, Y > ng

where {\,,} is a sequence in (0,1) with Y>> A, < oco. If "7 (b, < 00, then Limy,_,ooa, exists.

Lemma 1.7. Let ¢ : [0,00) — [0,00) be an increasing function with ¢(0) = 0 and {b,}°2, be a positive
real sequence satisfying:

o
Z b, = +00
n=0

and

Suppose that {a,}72 , is a nonnegative real sequence. If there exists an integer ng > 0 satisfying

a2y < a’+o(by) — bpd(any1),¥n > ng

where

o(bn)

n

lim

n—oo

=0, lim a, =0.
n— o0

2. Main Results

Theorem 2.1.

Let X, be a convex modular space, K a nonempty closed convex subset of X,, and T; : K — K, 7= 1,2 be
two generalized uniformly L-Lipchizian mappings with F(T1) () F(T2) # 0 where F(T;) is the fixed point of
T; in K and z* a point in F(T1) () F(12). Let ky, in [1,00) be a sequence with k, — 1 and let «,, and 3, be
two sequences in [0, 1] satisfying the following conditions:

()2 _nzg an = oo.
(i) > =2 ap < 0o

(i) >=nzg B < oo
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(i)Yo g an(kp — 1) < o0.
For any z¢ € K, let (z,,) be the iterative sequence defined by

Tnt1 = (1 —ap)xy + anT1'yn

Yn = (1 = By)xn + BuT5'x,Vn > 0.

If there exists a strict increasing function ¢ : [0,00) — [0, 00) with ¢(0) = 0 such that

(T"a — 2, j(x — a")) = kap(z — 2)* = ¢(p(z — 27)) + u,¥n > 0

then {x,} converges strongly to x*.

Proof:
It follows from (2.1) and Lemma 1.3 that .

P(Tnt1 — x*)Q = p((1 —an)zn + anTi'yn — x*)Q

= p((1 = ap)(xp — ) + an(TTy, — z*))?

< (1= an)’plen — %)% 4 200 (T{'yn — 2°, j (@041 — 7))

< (I- an)zp(fvn - x*)2 + 200, (I g1 — 2%, j (21 — 7))
+20n (T7Yn — 11 Tpt1, J (Tns1 — 7))

< (1- an)gp(xn - x*)Q + 20 (knp(Tpi1 — x*)Q
—¢(p(znt1 — 7)) + u) + 2an(Lp(yn — Tny1)
FuL)p(@ns1 — )

but
p(xns1 —Yn) = p((1—an)2n + anTi"yYn — yn)

)
p((L = an)(@n = yn) + an(T7'Yn — yn))
(1 — an)p(zn

(

(

< = yn) + anp(T1'yn — &%) + anp(yn — z7)
< (I —ap)p(xn —yn) + an(1 4+ L)p(yn, — %) + apul
< (T=an)p(@n = yn) + on(L+ L) (p(yn — 2n) + p(zn — 27))
+anul
< (14 anl)p(xn — yn) + an(l+ L)p(xy — 2¥) + apulL
< (14 anL)p(Bnxn — BnT5xy) + an(l + L)p(zy, — z*)
+a,ul
< (4 anL)Bu(p(T3zn — %) + p(an — 27))
+an(l+ L)p(zn — %) + apul
< (14 anL)Bn(Lp(xy — x*) + ul)
+(1+ anL)Bpp(zy — x¥)
+an,(1+ L)p(zy — %) + apul
< (14 anL)BnLp(zn — )+ (1 + anL)Brul
+(1 4 anL)Bnp(xy — ™)
+an(1+ L)p(x, — x%) + apulL
< (14 L)+ anl)Bn + an)p(zn — %) + uL[(1 + anL)Bn + o)
< (14 L)fup(zn —2*) +uLf,
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where f, = [(1 + anL)Bn + an]-
By the conditions (i), (i7) and (éii), we have

Z an frn, < 00 (2.2)
n=0
Substitute (2.3) in (2.2),
plani1— 2 = (1—an)’plan — %) + 20 (knp(zni1 — 2%)°

—¢(p(zni1 — 27%)) + u) + 20 (Lp(Yn — Tnt1)
+ul)p(zpi1 — 7)

< (1= an)’plan — )% + 20nknp(zni1 — a*)?
—203,0(p(Tnt1 — 2%)) + 2uay
+2anL[(1 + L)fnp(xn - J}*) + ULfn]p(anrl - $*)
+2uLapp(xpe1 — x¥)
Gn w2 |, 2uay 20, 0(p(Tpy1 — %))
< —plxp —27)" + -
2ua L?+ L .
+ n<];} )P(l‘nﬂ — ")
n
200, (ky — 1) + a2 o | 2uan
< {1 — —
2 — 2 L>+L
_ Oéngf)(p(anrl z )) + UOZn(fn + )P($n+1 —LL’*)
H, H,

where

Gpn=1-2an+a2+a,L(1+L)f, and H, = 1 — 20,k — oy, L(1 + L) f,

Since a;, — 0 as n — oo there exists a positive integer ng such that % < H, <1Vn > ng. it follows from
(2.5) that:

planer — ) < {14220 (ke — 1) + ap}plan — o) + {2ua,}
—{20n9(p(wnt1 — 27))}
+{2uan(fnL2 + L)}p(zn+1 — 27)

and so
plant1 —2*)? < {1+ 22an (ks — 1) + apl}p(zn — 2*)?
Using the conditions (ii) and (iv)

o0

QZ[Qan(kn —1)+a2] < oo

n=0

It follows from Lemma (1.4) that p(x, — x*) exists. Hence p(x, — 2*) is bounded. That is p(x, —2*)? < M
where M is a positive constant.

Considering (6) and setting

0, = p(xy, — %), A\ = 20, and

0n = 220, (kp — 1) + &2]M + {2uay,} + {2uan (foL? + L)} M,
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we have
On 1 < 0 — An(0ns1) + 00,V > ng

. Hence, the conditions in Lemma (1.5) are satisfied.
Therefore, p(z, —x*) — 0 that is z,, — 0 as n — oco. This ends the proof.
In Theorem 2.1, if u = 0, the conclusion is as follows:

Corollary 2.2.

Let X, be a convex modular space, K a nonempty closed convex subset of X,, and T; : K — K, i=1,2
be two uniformly L-Lipchizian mappings with F(T1) () F(T2) # () where F(T;) is the fixed point of T; in K
and z* a point in F(T7) () F(T2). Let k, in [1,00) be a sequence with k, — 1 and let «, and S, be two
sequences in [0, 1] satisfying the following conditions:

()32 an = 0.
(i) Yoz o < oo
(i) > Bn < 00.

(iV)ZfLo:o an(kn — 1) < 0.
For any xo € K, let (z,,) be the iterative sequence defined by

Tyl = (1 — apn)zn + anTT'yn
Yn = (1 - ﬂn)xn + BnT2n$nvn > 0.
If there exists a strict increasing function ¢ : [0,00) — [0, 00) with ¢(0) = 0 such that
(T 2%, (o — ) = kapl = 2°)? = Blp(e — 2°)), ¥n 2 0

then {x,} converges strongly to x*.
In Theorem 2.1, if u = 1, we have:

Corollary 2.3.

Let X, be a convex modular space, K a nonempty closed convex subset of X,, and T; : K — K, 7= 1,2 be
two generalized uniformly L-Lipchizian mappings with F(T1) () F(T2) # 0 where F(T;) is the fixed point of
T; in K and z* a point in F(T1) () F(T2). Let ky, in [1,00) be a sequence with k, — 1 and let «,, and 3, be
two sequences in [0, 1] satisfying the following conditions:

()20 an = 0.
(i) Do apy < o0
(i) >=nzg B < 0o

(iv)> 02 g am(kn — 1) < 0.
For any z¢ € K, let (z,,) be the iterative sequence defined by

Tn+l1l = (1 - an)wn + anTlnyn

Yn = (1 - Bn)mn + ﬂnTznann > 0.
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If there exists a strict increasing function ¢ : [0,00) — [0, 00) with ¢(0) = 0 such that

(T"z — 2, j(z — 2)) = kap(z — 2)* = ¢(p(z — 2*)) +1,Yn > 0

i
then {x,} converges strongly to x*.

Remark 2.
(1) Theorem 2.1 extends and improve the results of S. S. Chang, Y. J. Cho, J. K. Kim [4].

(2) If u =0 and p(z) = ||z|| in Theorem 2.1, we have the result of the authors in [4] but if v = 1, our
result will be a generalization of some results in this area of research.

(3) Undersuitable conditions, the sequence {z,,} in Theorem 2.1 can also be generalized to the iterative
scheme with errors.

Example 2.4.
Let X =R, K =[0.1] and T : K — K be a map defined by

X
To=2%
T

Clearly, T is a generalized uniformly L-Lipchizian with F(T") = 0.
Define p(z) = |z| and ¢ : [0, +00) — [0, +00) by

(T'x —T"z", j(x — %)) = (4—”—0,3'(3:—0))
= (5 -0.2)
x
< -
D
2
< 2-T
A 1
< a? = ¢(|xl)

obviously, T' completes
(T'z — x*, j(x — %)) = kpp(z — 27)? — ¢(p(z — 2*)) + u,¥n > 0

with sequence {k,} = 1 and u = 0. If we take o, = /3, = %HVn > 1, for arbitrary x; € K, the sequence
{z,}5°, in K defined by (1) converges strongly to the unique fixed point z* € F(T).
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